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1. INTRODUCTION 
 
State-of-the-art airborne mapping is in major transition, which affects both the data 
acquisition and data processing technologies. The Information Technology (IT) age 
has brought powerful sensors and revolutionary new techniques to acquire spatial data 
in large volumes, rapidly, and at an accuracy level that was unprecedented in past 
production.  
 
New positioning sensors, such as integrated Global Positioning Systems and Inertial 
Navigation Systems (GPS/INS), provide for the first time the capability to acquire 
sensor orientation through direct physical measurements and, thus, they provide the 
indispensable platform orientation for emerging active sensors such as LiDAR and 
Radar. Improved Light Detection and Ranging (LiDAR) systems, which have been in 
use for global scientific research for decades, have finally reached a performance 
level (increased data rate, higher flying heights, and better accuracy - all at an 
affordable price) that enables them to be put into production. In fact, LiDAR 
technology became the main source of Digital Elevation Model (DEM) and Digital 
Surface Model (DSM) in the early years of the third millennium and now it offers 
substantial benefits over traditional surface extraction techniques.  
 
The major focus of this research effort was the seamless introduction of a highly 
automated multi-sensor image data acquisition and processing technology into the 
daily operations of the ODOT Office of Aerial Engineering (OAE). The direct geo-
referencing component that had been implemented in the office of OAE just before 
this project started provided the necessary basis for the establishment of the new 
LIDAR-based technology.   
 
The introduction of LIDAR into OAE daily operations posed real challenges since, 
besides the very different hardware (as compared to the traditional imaging sensors), 
the characteristics of the data, as well as the type of required processing, were 
significantly different from the methods used in the past. Therefore, the main 
objectives were: 1) to provide support for the procurement phase so that the system 
would have optimal configuration with respect to ODOT specific needs; 2) to assist in 
developing and implementing the workflow for the data processing and to assure a 
complete and seamless solution strategy; 3) to establish Quality Assurance/ Quality 
Control (QA/QC) procedures, which are essential to LIDAR systems due to the lack 
of redundancy in range data; 4) to develop techniques for LIDAR advanced post-
processing to eliminate artifacts over flat areas; 5) to initiate research on fusion of 
LIDAR data with simultaneously acquired digital imagery, which will ultimately help 
both the ortho-production and the surface extraction process; and, 6) to provide 
training and technical support for ODOT personnel. 
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2. RESEARCH OBJECTIVES 
 
The primary objectives of this research project were as follows: 
 

• To introduce a new airplane sensor suite configuration integrated from 
commercially available sensor components, 

• To increase the standard accuracy of LiDAR systems so that true design 
quality is achieved, 

• To carry out test flights to benchmark the performance of the procured LiDAR 
system, 

• To perform the extended quality assurance analysis based on the above 
mentioned airborne tests with ample ground control, 

• To consult ODOT personnel in GPS/INS technology/data acquisition and 
processing, 

• To consult ODOT personnel on future developments such as the introduction 
of high-resolution digital photogrammetric cameras.  

 
 
3. GENERAL DESCRIPTION OF RESEARCH 
 
3.1 LiDAR Overview 
 
LiDAR technology, introduced in the late 1990s, has received wide acceptance in 
airborne surveying as a leading tool for obtaining high-quality surface data in an 
unprecedented short turnaround time. The adoption of the new technology was fairly 
smooth and quick, primarily due to the high-level of automation of the data 
processing. With increasing numbers of the systems sold, vendors have been able to 
refine the technology rather quickly, delivering a continuously improving 
performance, measured in terms of number of points. Not only has the number of 
points per surface area increased, but the number of returns has increased and the 
intensity signal has become available. 
 
Without any doubt, LiDAR (also called airborne laser scanning) systems have 
established themselves as a dominant player in high-precision spatial data acquisition 
(Flood, 1999) in the last four to five years. Installed in aircraft and helicopters, these 
active sensor systems can routinely deliver surface data at decimeter-level vertical 
accuracy in an almost totally automated way. There has not been any revolutionary 
advancement in the laser sensing technique; gradual technological developments 
characterized the LiDAR systems developments. Figure 1 shows the progress in the 
number of pulses per second rate (PRF). The post spacing seems to drive the market, 
and about a 10 times increase in pulse rate produced about a 3-4 times increase in post 
spacing. The increasing point density not only results in better DEM or DSM data but, 
also opens up new applications, such as feature extraction, including mainly building 
and road extraction (Vosselman and Dijkman, 2001). 
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Figure 1. LiDAR pulse rate trend. 

 
 
The number of returns and the intensity data developments for the same time period 
are shown in Table 1. 
 

Year 1999 2000 2001 2002 2003 2004 
Returns+Intensity 2-5 2-5 2-5 + 2 2-5 + 2 4 + 4 4 + 4 

 
Table 1. Number of returns and intensity data availability. 

 
 
There is an accelerating trend in both statistics, so the prediction of the future is 
clearly a challenging task. Even though it is not directly a technological trend, it is 
important to see the number of systems installed in the industry, too, as only a healthy 
market can sustain strong future system developments, see Table 2 and Figure 2.  
 

Year 1999 2000 2001 2002 2003 2004 
Systems Sold 17 15 13 12 24 25 
Total Systems 37 52 65 77 101 126 

 
Table 2. Number of system sold yearly and total number of systems installed. 

22000055  
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Figure 2. Number of LiDAR systems sold. 
 
The key issue of the LiDAR technology is: what accuracy can be achieved, under 
what conditions, and how this accuracy impacts the end products. In general, the error 
budget of LiDAR mapping systems depends on individual error budgets of the core 
subsystems, such as navigation sensors and the laser range finder. The contributions 
come from a wide range of various sensory errors. For example, the range finder 
accuracy is driven by the time measuring performance of the receiver electronics, 
optical mismatch between transmitter and receiver, scanner angle encoder errors, 
sensor mounting bias, etc. The navigation component accuracy depends on the quality 
of the actual GPS and the Inertial Measurement Unit (IMU) sensors, and the methods 
of their integration (loose vs. tight model), as well as the Kalman filter design and the 
adopted error models. Other factors are the spatial relationships between the sensors 
such as lever arm, defined as the offset between the GPS antenna and the IMU frame, 
and the boresight misalignment, i.e., the angular biases between the navigation and 
imaging sensor frames. Then there are errors, which are independent from the 
instrumentation, such as GPS constellation during the survey (satellite geometry or 
Position Dilution of Precision (PDOP)), the baseline length, the atmospheric 
conditions, the flying height, terrain undulation and the material signature. To realize 
the maximum potential of a LiDAR system, all these error sources should be 
adequately modeled and estimated.  
 
The overarching objective of the project was to ensure that the optimal accuracy of 
OAE’s new LiDAR mapping system would be achieved and maintained in production, 
including both the primary data acquisition system and the data processing in the 
office. Although the LiDAR system manufacturing industry is rather small, there are 
still various parameters/options in the main systems which represent more than two 
thirds of the total market. In addition, besides turnkey solutions, there are custom-
built systems, which can be tailored to various clients’ needs.  
 
3.2 Procuring the LiDAR System for OAE  
 
The procurement of the LiDAR system was based on a careful analysis of the 
transportation specific needs of OAE. Since the OAE handles a large volume of 
mapping data every year, the efficiency of data processing is of utmost interest 
(besides the timeliness and accuracy of the final products). Hence, the main thrust of 
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the proposed research was to address the requirements of the office data processing. 
After the initial analysis and then discussion with OAE personnel, the decision was 
made to consider the two market-leader LiDAR vendors, Optech and Leica. 
 
In the summer of 2002, both major LiDAR manufacturers had a chance to present 
their products and services at the Arial Engineering office. Both presentations were 
excellent and thus both vendors were invited to the next step of the experimental 
comparison of the two systems. During the discussions with the two vendors, a set of 
objectives were worked out with respect to test flights. Both companies agreed to do 
demo flights either here in Columbus or at their headquarters. The target LiDAR 
surveys were to include data collected over various roads at different altitudes and in 
multiple sessions. More specifically, low flying height missions were to be flown with 
different scan rates to collect data. Using the highest scan rate, data were to be 
collected to achieve a near even distribution of the LiDAR points on the ground. In 
repeat missions, high LiDAR point density profiles were expected to be collected, in 
other words the point density along the profiles would be high compared to the 
distance between the profiles. These low altitude missions could provide experimental 
data to assess the achievable quality for design engineering scale LiDAR mapping. 
Missions to be flown at a higher altitude were less critical in terms of performance as 
their purpose was planning level mapping. In addition, research would address the 
optimal definition of ground targets used for LiDAR calibration and performance 
validation. 
 
By fall 2002, both selected vendors submitted their demo datasets, which were 
acquired during dedicated missions specified by OAE of ODOT. After intensive 
processing of these datasets, a comparative analysis of the performance was prepared. 
In addition to the visual interpretation, the LiDAR processing tools that were 
developed in the project were extensively used. The performance evaluation provided 
the technical data for issuing a request for bid and later to support the decision making 
process on which of the two systems would be acquired. The request for bid is in 
Appendix A. 
 
In early April, 2003, both vendors submitted their quote in response to the RFQ sent 
to them in March, 2003. The process of selecting the right system for ODOT OAE 
was based on the documentation submitted with the quotes, additional phone 
conversations conducted with the vendors, phone conversations with users suggested 
by the vendors as references, and evaluation of test LiDAR data acquired earlier by 
both vendors. The evaluation process was a rather complex task as the specifics of the 
corridor mapping operations of ODOT OAE are different from mainstream LiDAR 
mapping and therefore limited prior information was available for comparing the two 
systems. The decision, in fact, was a rather difficult task as both systems are powerful 
and careful attention had to be paid to properly assess which one could better support 
the specific needs of high-precision road mapping. The key aspects that determined 
the selection of the Optech system were: 

1) Optech offered a free upgrade to a higher frequency to 70 kHz. This 
information had been known to us but was not spelled out in the quote as the 
introduction of the new system and the press release were scheduled for the 
ASPRS 2003 Convention, May 5-9, 2003. The higher frequency is a decisive 

10



Geo-Referenced Digital Data Acquisition and Processing System Using LIDAR Technology 

  

 

factor for ODOT OAE as it serves the very dense sampling requirements 
needed to observe the pavement surface at high accuracy. In simple terms, the 
performance ratio measured in points per price between the systems changed 
more than the price difference between the two systems. In addition, the 
variable frequency rate offered by Leica was less attractive from an 
operational point of view. The comparison by ODOT OAE on this subject is 
included in Appendix A. 

2) The Optech system was compared to the Leica system, which is a more open 
system and certain parts were still being developed at the bidding time. ODOT 
personnel are new to LiDAR and preferred simple operations with hopefully 
fewer complications. 

3) The test datasets revealed some quality differences between the two systems. 
Specifically, the intensity signal was notably better in the Optech system. The 
range data were comparable, albeit the Optech system showed a slightly better 
spatial distribution. 

 
In summary, the performance of the Optech system appeared considerably better than 
the performance of the Leica system, and with the sponsor, the agreement was 
reached that the value of the Optech system was justified. However, before the order 
was issued there was one more item, an accompanying digital camera procurement, 
that had to be decided. In the proposal, there was a 4K by 4K Megaplus camera 
budgeted; basically, representing a $100,000 hardware cost, assuming the no-cost 
availability of software that had been developed earlier at The OSU Center for 
Mapping for a similar system. However, two years had passed since the time of 
preparing the proposal and the medium size digital camera market changed a lot. By 
2003, both vendors could offer 4K by 4K integrated camera systems. Therefore, 
discussions between ODOT OAE and OSU resulted in significant changes to the 
original scope and tasks of the project. In short, a $250,000 digital camera was added 
to the LiDAR purchase order. To offset the price difference, ODOT increased the 
funding by $150,000. In addition, the price of the Optech LiDAR system was also 
higher than budgeted. Therefore, some of the research tasks to be performed by OSU 
were also removed from the project to offset about a $100,000 shortage. The details of 
the agreed changes are in Appendix B. 
 
The long-awaited acceptance test flight of the purchased Optech system took place in 
Toronto, Canada, on February 19, 2004. During the one hour flight, both the Optech 
30/70 ALTM LiDAR and the DDS 4K by 4K digital camera worked well, and the 
initial data reduction right after the flight showed quality results. The system was 
shipped late spring to ODOT, but due to unexpected delays in airplane procurement, 
the system was installed only in the fall. The Delivery Performance Reports were 
based on the data flown on October 22-25, 2004. The first dedicated test flight using 
LiDAR specific ground controls developed in the project took place on December 2, 
2004. 
 
3.3 Research Developments to Support OAE LiDAR Operations 
 
The accomplished research tasks were primarily concerned with the development of a 
LiDAR-based map production system where the accuracy requirements were driven 
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by the specifics of OAE operations. The algorithmic developments, techniques 
researched, and programs developed are discussed in the Results section.  
 
 
4. RESULTS 
 
The scientific progress has been continuously documented in journal papers and 
conference proceeding papers. All the relevant and related papers are included in 
Appendixes C-F. 
 
4.1 Surface Modeling 
 
Due to the irregular distribution of the LiDAR point cloud, interpolation is an 
essential component for any LiDAR data processing. On one side, most of the 
applications dealing with surfaces require evenly-spaced data (grid). On the other side, 
quality control and calibration processes involve surface comparisons, which, again, 
cannot be directly performed on unevenly-spaced data. Therefore, interpolation 
methods have been studied to accomplish this task. After searching the literature and 
reviewing available implementations, it was found that none of the widely used 
methods is tailored to the characteristic of the LiDAR point distribution and error 
characteristics. Testing several methods on real data, the decision was made to 
develop two techniques: (1) a Fourier-series based, and (2) a wavelet-based. The first 
method is a combination of polynomial and Fourier harmonics representations. The 
coefficients for both groups of parameters are determined in a least squares 
adjustment. The technique has been extensively tested and results are reported in 
Appendix C. The wavelet-based model produced an excellent tool for compressing 
the data. However, the irregularly spaced input data cannot be directly handled by 
wavelets at this point and no solution has been found to circumvent this problem. 
Obviously, if the data are converted to a grid then the wavelet method works fine. As 
the grid conversion is a key step, once it is done all the processing such as surface 
comparisons can be done without wavelets.  
 
4.2 LiDAR Sensor Calibration and Processing 
 
Sensor calibration is essential in achieving the highest quality data from any 
measurement system. LiDAR data are an excellent source of high volume and 
reasonably accurate spatial data; however, the points are featureless; in other words, 
there is no direct correspondence between the surface and the reflected points (such as 
whether a point was generated from a road surface, from a car, or from a building). 
The introduction of LiDAR intensity data or waveform certainly addresses this 
problem to some extent (the difficulty is the relative nature of the LiDAR intensity 
signal). The assessment of the LiDAR data is a non-trivial problem in this context. In 
addition, the moving component of the sensor system (rotating mirror) represents 
another difficulty of direct calibration. For these reasons, methods that deal with a 
larger amount of points, and possibly with a good spatial distribution over surface 
area from where they were collected, are favored for LiDAR calibration. In our 
investigation, we focused on the geometrical calibration of the system. Obviously, the 
waveform and travel time calibration tasks are equally important, but they are usually 
well controlled by the manufacturer’s calibration. For example, cm-level ranging 
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accuracy can be routinely achieved for a single laser pulse over a km range. The 
increasing pulse rate, however, could present a problem as it comes with smaller laser 
pulse energy, and thus the lower Signal-to-Noise-Ratio (SNR) could impact the 
ranging accuracy. For that reason, an intensity table-based correction has been 
standardized. So the big question remains how well this accuracy can be approached 
under normal operations. Eventually, there are two major components in modeling of 
the geometrical behavior of a LiDAR system that are crucial in achieving high spatial 
accuracy: scan angle calibration and boresight misalignment. The first component 
compensates for the non-ideal encoding of the rotation sensor by establishing a 
correction profile. This task is usually accomplished by collecting data over a large 
flat area and then by analyzing the LiDAR measured surface. Without correction, just 
by directly using the encoder data, a surface bending up at the edges is obtained. The 
phenomenon is usually called “smiley” error. Applying the correction, the surface will 
flatten out. Since this task is rather simple, manufacturers as well as users can perform 
it so there was no effort in our project to address this calibration task (although, it can 
be built into our boresight misalignment technique). The spatial connection between 
the navigation system and the laser scanner is described by the boresight 
transformation. The mechanical adjustment of the two systems never can be so good 
that it would satisfy the required accuracy requirements. Therefore, calibrating for this 
discrepancy is important and is usually called boresight misalignment. Substantial 
efforts were devoted to address this problem, and the method developed, including 
results, is reported in Appendix D. It is important to note that to achieve the ultimate 
accuracy a further non-physical model based model can be used, which obviously 
requires the direct use of object space information such as dedicated LiDAR ground 
control targets that is discussed as a separate research item. To support the automated 
LiDAR boresight misalignment process, a segmentation of the LiDAR points is 
needed and therefore this task was addressed in our project. Results of the selected 
and refined segmentation are reported in Appendix D. 
 
4.3 Using LiDAR-Specific Targets for Ground Control 
 
The use of LiDAR-specific ground control targets represented a novel idea, not 
explored in practice yet. Therefore, extensive simulations were performed to 
determine a favorable LiDAR-target design, including optimal target size and shape, 
signal response, coating pattern, and methods to accurately determine the 3-
dimensional target position in the LiDAR dataset. The horizontal target position is 
found by an algorithm similar to the generalized version of the Hough-transform 
(Hough, 1959). Duda and Hart (1972) first introduced the generalized version of the 
Hough transform to detect curves. The search is based on the known radius of the 
target circle; the process finds all the possible locations of the target circle center in a 
grid. To automate the processing of the target-based correction of LiDAR data, a 
software toolbox was developed. Simulation results indicated that at 5-10 points/m2 
LiDAR point density, circular 2-3 m diameter sized flat targets could provide sub-
decimeter accuracy at virtually any flying height. In two manufacturing phases, OAE 
produced targets in a few varieties for testing. The detailed description of the 
developed method, including initial simulations, the optimal target design, and then 
test results based on two test flights are presented in Appendix E, providing a detailed 
performance analysis on the achievable improvements in LiDAR data accuracy using 
the LiDAR-specific ground control targets. 
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4.4 LiDAR and Image Fusion 
 
With the addition of a 4K by 4K digital camera to the LiDAR system, a new objective 
presented itself to the project: to study and possibly create a technique to fuse LiDAR 
and image data to obtain better surface reconstruction and support the feature 
extraction of objects/targets. The difficulty of the fusion of LiDAR and image data 
lies in the correspondence problem. In other words, the LiDAR provides good but 
featureless points in space, while image data is weaker in geometry but provides a 
good amount of information on objects. As the formation of images represents a 
projection from 3D to 2D, the recovery of any 3D information requires the use of at 
least two (or more) overlapping images in order to recover the third lost dimension. 
Obviously, this photogrammetric process cannot easily compete with the excellent 
positioning accuracy of a LiDAR range measurement, which directly delivers a highly 
accurate 3D location. Comparing the error characteristics of the two datasets, the 
following can be said. The LiDAR points have excellent vertical accuracy and a 
somewhat modest horizontal accuracy, which is due to the unknown location of the 
return signal within the LiDAR footprint. In contrast, the multiple-image derived 
surface points (typically obtained from stereo) exhibit a slightly different 
characteristic such as better horizontal accuracy and somewhat modest vertical 
accuracy. Another important aspect is the dependency on the distance between the 
sensors and the objects. With higher flying height, the vertical accuracy remains more 
or less constant for the LiDAR; for the image-derived data there is a linear 
dependency on the flying height. After various models and testing, a method was 
investigated that addressed the problem of merging surface points from different 
sources in a very general way (although we used it only for LiDAR and image data). 
The heart of the concept is the individual description of the spatial error terms of the 
individual points. The points can come from multiple sources such as repeated 
LiDAR flights over the same area, and/or stereo-based points from single or multiple 
flights. Once the input points are defined, the objective is to find a surface that fits in 
an optimal way to all the input points in least squares terms. The problem as described 
is ill-posed and no direct answer is available. Our investigated solution is based on 
converting the horizontal accuracy terms into vertical ones and thus fixing the 
horizontal location of the points. This way, the problem becomes manageable, as a 
least squares adjustment can be formulated to optimize the RMS for all of the points. 
A question is what description of the surface is used. Obviously, the developed 
technique can be applied to any surface modeling method as long as there is an 
analytical description available. In our tests, the Fourier series and polynomial based 
surface modeling described above was used. The fusion method and initial results are 
also described in Appendix F. As the DDS digital camera offers a moderate spatial 
resolution (measured in GSD), the quality of DEMs extracted from this imagery is not 
always adequate to support fusion. 
 
4.5 Software Developments 
 
During the course of the project extensive code developments were carried out. 
Matlab environment represented the basic platform for algorithmic implementation 
and testing. All the simulations were carried out in Matlab. Then, once the techniques 
had settled, the performance critical components were transferred to Microsoft Visual 
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Studio, C++ environment. A large number of Matlab routines are available in 
different categories such as space-image forward/backward transformations, area-
based correlation, least square matching, calibration, various 3D transformations, etc. 
Most of the macros can be easily reused for other purposes. The main outcome of the 
implementation of the LiDAR-specific ground control correction technique is the 
LIFT program (LiDAR and Image Fusion Technology). The program manual is in 
Appendix G. 
 
 
5. CONCLUSIONS 
 
LiDAR can routinely provide adequate accuracy to mainstream (basic) mapping 
projects – typical quoted vertical accuracy is about 50 cm at 90% Circular Error (CE), 
but 15-20 cm is also achievable under well-controlled circumstances. The main 
difficulties of improving accuracy are: the quality of the navigation solution can vary 
a lot, and the laser scanning device is a complex electro-optical-mechanical system 
that lacks the long-term stability; and thus, it’s static calibration is not satisfactory. 
General practices to improve accuracy are: calibrating laser sensor by comparing 
overlapping strips and eliminating differences, and use flat vertical with known 
elevation to determine and then apply vertical offset to improve absolute accuracy of 
the acquired data. 
 
To achieve or approach the theoretical limits of the LiDAR sensor ranging accuracy, 
which is about 2-3 cm at 67% CE, our research efforts focused on the only technique 
which offers a solution for both problems (navigation and sensor calibration): using 
ground control. We pursued intensive research to develop a LiDAR-specific target 
methodology. Extensive simulations were carried out to find out the optimal shape, 
size and coating pattern of the targets. The major findings were: 1) circular-shaped 
flat targets, horizontally leveled and elevated, could represent an optimal design, 2) 
obviously, the larger the size the better positioning accuracy; however, the results 
showed that at about 5 points per m2 point density 2-3 m diameter size could already 
provide sufficient accuracy and further increasing the size wouldn’t lead to 
measurable improvements, and 3) using two concentric circles (inner circle is about 
half the size of the outer one) with different coating (dissimilar reflection parameters) 
could produce a substantial difference in horizontal positioning accuracy. The typical 
expected accuracies, based on our simulations for a 5 points per m2 density were about 
5 cm (67% CE) vertically and about 10 cm (67% CE) horizontally. In this case, the 
laser footprint was 15 cm and the laser ranging accuracy was assumed to be 3-4 cm 
(67% CE), representing typical values for the Optech 30/70 system. 
 
Based on the simulation results, actual targets were fabricated by OAE personnel and 
flight tests were carried out to validate the performance of the newly developed 
methods with real LiDAR data. A scaleable adjustment algorithm was developed and 
implemented to adjust the LiDAR data and to automate the overall data processing. 
The developed software can handle the following typical configurations: 1) single 
vertical shift compensation (z only), 2) three-dimensional transformation to account 
for horizontal discrepancies (in addition to the vertical one), 3) strip adjustment – each 
flight line has its own correction parameters, 4) segmented strip adjustment – strip is 
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divided into smaller segments for individual corrections, and 5) block adjustment – all 
the flight lines are adjusted in one step.  
 
To assess the achievable accuracy improvement using the designed LiDAR-specific 
targets for LiDAR data refinement, data from two test flights were analyzed. The first 
test flight in Ashtabula, OH, was aimed at infrastructure mapping of a transportation 
corridor. To support our investigations 15 pairs of targets were placed symmetrically 
along the two sides of the road. The second test flight at the Madison Calibration 
range was a dedicated test flight for investigating the target identification accuracy 
and the effect of targets in the improvement of LiDAR data accuracy for various 
LiDAR settings and target densities. Results proved that the algorithms developed to 
determine ground target center coordinates in LiDAR data could provide 5-10 cm 
horizontal positioning accuracy (at 25 cm footprint size) and 2-3 cm vertical accuracy 
of the target coordinates at 5 points/m2 LiDAR point density. Consequently, larger 
than 10 cm horizontal errors in the LiDAR data and vertical errors larger than 2-3 cm 
can be detected and corrected using the LiDAR targets.  
 
 
6. IMPLEMENTATION PLAN 
 
The OSU staff worked in close collaboration with ODOT OAE personnel to assure 
that all functional aspects of the system’s operation were followed during the field 
procedure. This included test flights, calibration and training seminars for the OAE 
staff.  
 
The system is fully implemented and installed in the OAE airplane, and has been 
operational since fall 2004. To support daily operations and effective data processing 
and analysis, the “LIFT” program is included in Appendix G. 
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Request for Quote 
 
Ohio Department of Transportation, Office of Aerial Engineering, is in the process of 
procuring a state-of-the-art airborne LiDAR system. They will use it to support 
operations which primarily includes high-precision corridor mapping of the road 
network of the State of the Ohio. Therefore, ODOT OAE is seeking quotes on 
supplying a turn-key LiDAR system with the highest performance available for 
highway corridor work, including specification, options, financial terms, references, 
delivery and training schedule, maintenance and technical support. The proposal 
submitted for this RFQ should at least address the following items. 
 
Anticipated typical operational conditions and objectives: 

• Flying height (AGL) is in the 1,000-3,000 ft range. 
• Aircraft velocity is in the 100-120 knots range. 
• The highest point density with even spatial distribution as much as possible. 
• The highest feasible point accuracy in both directions using ground control.   

 
Specification (hardware): 

1. Flying height, (FH): lowest and highest (AGL). 
 
Optech LH Systems 
200-2000 m 500-4000 m (can be lowered if needed at 

no cost – they have done some recent 
tests at low flying height) 

 
2. Pulse repetition rate (PRR). 

 
Optech LH Systems 
50 kHz – fixed 47.5 kHz @ 1,000m and 36 kHz @ 2,000 

at low flying height (< 1,000m) , it can be 
considered fixed, say 1+1 w/ 52 kHz or 
2+2 w/47.5 kHz 

 
3. Maximum scan angle (MSA). 

 
Optech LH Systems 
40° FOV, 20° scan angle 75° FOV, 37.5° scan angle 
 

4. Configuration flexibility/limitations of the FH, PRR and MSA parameters, 
including aircraft speed. 

 
Optech LH Systems 
FOV, scan rate, adjustable in flight PRP, FOV, scan rate adjustable in flight 

between flight lines (PRP is probably not 
needed as max frequency should be used) 

 
5. Beam divergence control: fixed, switch-able or dynamically controlled, 

minimum and maximum values. 
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Optech LH Systems 
0.21 or 0.7 mrad, can be changed in flight 
(0.7 mrad works with the lowest flying 
height, 0.21 mrad can be only used for 
higher flying heights) 

0.33 mrad – fixed (0.2 is an option but 
lowest flying height is affected due to 
eye-safety)  

 
6. Mandatory roll compensation. 

 
Optech LH Systems 
Yes Yes (option, $10K) 
 

7. Number of returns and intensity/waveform configuration options.  
 
Optech LH Systems 
2+2 F and L return, waveform option 1+1, 2+2, 3+3, F and 2nd return, 

waveform option is offered within a year 
(< $100K) 

 
8. Intensity/waveform signal resolution and noise characteristics. 

 
Optech LH Systems 
13 bit resolution, intensity-based range 
compensation is available in the software 
(linear) 

8 bit resolution with AGC (AGC can be 
recorded), intensity-based range 
compensation is available in the software 
(binary) 

 
9. Absolute ranging accuracy of the laser sensor system. 

 
Optech LH Systems 
3 cm 2 cm 
 

10. Point measuring accuracy as advertised and typically achieved horizontally 
and vertically, with and without using ground control. 

 
Optech LH Systems 
Advertised: V:15 cm, H: 1/2000 * 
altitude 
Typical: V: <10 cm, H: 1/3000 * altitude 

Advertised: V:15 cm, H: 11-46 cm (15 
cm) 
Typical: V: 6-10 cm 

 
11. Main data storage device choices. 

 
Optech LH Systems 
Removable harddrive Removable harddrive 
 

12. Navigation component choices. 
 
Optech LH Systems 
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RT display with moving map LH Apcot system (optional) 
 

13. Electronic viewfinder capability. 
 
Optech LH Systems 
Video camera, 30 Hz analog Web-cam, 2-0.2 Hz, (option, $10,000) 
 

14. Standard mechanical system description, including weight, size, operating 
temperature, etc. 

 
Optech LH Systems 
Yes Yes 
 
 
Specification (software): 

1. Mission planning support. 
 
Optech LH Systems 
ALTM – NAV AeroPlane spreadsheet 
 

2. Data acquisition user interface, including in-flight parameter control, 
monitoring and diagnostics. 

 
Optech LH Systems 
ALTM – NAV diagnostic tools (data 
gaps) 

Yes, but not clear 

 
3. Data processing software, including navigation solution computation, raw 

point cloud computation, filtering components such as vegetation removal, 
feature extraction, etc. 

 
Optech LH Systems 
Yes, vegetation removal included but no 
feature extraction (OEM) 

Yes, but no feature extraction (OEM) 

 
4. System calibration and diagnostics tools such as boresighting and using 

ground control to improve accuracy. 
 
Optech LH Systems 
Yes, Autocalibrator – not clear Attune and TerraScan/MicroStation 
 

5. Data interface/translator support (LAS format).. 
 
Optech LH Systems 
Yes Yes 
 

6. Licensing conditions, including number of seats. 
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Optech LH Systems 
Realm (2), Nav (2) and PosPak (2) Attune, AeroPlan, ALS Post Processor, 

PosPak (1), TerraScan/TerraModeler (1) 
needs MS 

 
 
Options: 

1. Digital camera upgrade options (4K by 4K camera category). 
 
Optech LH Systems 
Yes, Emerge OEM  No (any systems from the market) 
 

2. Future upgrade to higher pulse rate (75-100 kHz). 
 
Optech LH Systems 
Likely Likely 
 

3. Maintenance and/or extended warranty. 
 
Optech LH Systems 
3-level system 3-year maximum (can be extended w/ 

similar terms) 
 

4. Bathymetry capability. 
 
Optech LH Systems 
SHOALS No 
 

5. Any other options appropriate to achieve better performance for highway 
corridor work. 

 
Optech LH Systems 
No No 
 
 
Installation and Training: 

1. Onsite and factory installation alternatives. 
 
Optech LH Systems 
Yes, onsite and factory Yes, onsite and factory (clarified) 
 

2. Onsite training, including mission planning, data collection and data 
processing. 

 
Optech LH Systems 
5 days before and 5 days after installation 1 wk before and 1 wk after installation 

(they have a new 3 wk schedule: 1 wk for 
data processing, then 1 wk for installation 
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and testing, then after about a month 
another 1 wk to address problems/local 
specifics and so on). 

 
3. Acceptance test. 

 
Optech LH Systems 
Yes Yes (clarified) 
 
 
Additional Information: 

1. Three references of clients using similar/predecessor LiDAR systems. 
 
Optech LH Systems 
7 references 1 reference (they added EnerQuest and 

Merrick – can add more if needed) 
 

2. Any supporting information about the company’s dedication to assist with 
operational and data processing problems. 

 
Optech LH Systems 
No No 
 
 
Financial Terms: 

1. Price of the complete system with itemized quotes for options. 
 
Optech LH Systems 
  
 

2. List of deliverables. 
 
Optech LH Systems 
  
 

3. Schedule including delivery, installation, training and acceptance test. 
 
Optech LH Systems 
  
 

4. Payment terms. 
 
Optech LH Systems 
  
 

5. Warranty schedule. 
 
Optech LH Systems 

23



Geo-Referenced Digital Data Acquisition and Processing System Using LIDAR Technology 

  

 

  
 

6. Validity of quote. 
 
Optech LH Systems 
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Changes to Project 
 

Geo-Referenced Digital Data Acquisition and Processing 
System Using LIDAR Technology 

 
ODOT reference number: 14799(0) 
ODOT agreement number: 11322 

 
 
A. Changes to the Duration of the project: 
 The old project completion date was August 1, 2004 
 The new project completion date is June 30, 2005 
 
 
B. Changes to the Task/Effort 
 
Original plan: 
 

4. Purchase of COTS 
software 

1 3807.69              

7. Road surface mark 
R&D 

15 57115.35              

8. Material signature 
correction R&D 

15 57115.35              

 
Modified plan: 
 

4. Purchase of COTS 
software 

0 0.00              

7. Road surface mark 
R&D 

6 22971.09              

8. Material signature 
correction R&D 

0 0              

 
 
C. Changes in the Budget: 

• The cost for equipment purchased for ODOT is increased by $244,000.00 to 
provide funding for a 4K by 4K color digital camera system. 

• The cost of the research component by OSU is reduced by $95,067.30 to 
partially cover the cost of the digital camera system.. 

• ODOT will provide additional funds of $150,000.00 to partially cover the cost 
of the digital camera system. 
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APPENDIX C 
 

Surface Modeling 
 
 

1. Wavelet Transformation of LiDAR Data to Support Road Surface Modeling, 
Internal Report to ODOT, 2003. 

2. Csanyi N., Paska E. and Toth C., 2003: Comparison of Various Surface 
Modeling Methods, Terrain Data: Applications and Visualization – Making 
the Connection, ASPRS/MAPPS, Charleston, SC, October 27-30, 2003, CD-
ROM. 
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1. Introduction 
 
 
1.1. Objectives 
 
The objective of this study is to show how wavelets can be used for efficient 
representation of LiDAR data and to demonstrate its performance by using a demo 
software developed for the feasibility test. 
 
 
1.2. What is Wavelets? 
 
Fourier series is useful mathematical tool for the representation of periodic signals and 
has trigonometric functions as basis functions. Consequently, we can model any signal by 
using a finite sum of infinite trigonometric (sine and cosine) series. However, it is not an 
efficient way to represent signals with Fourier series if we have, for example, piecewise 
constant signal, in which case, many more terms of trigonometric are needed to obtain the 
reasonable description. On the other hand, we can represent the original signal with better 
efficiency if we choose piecewise constant wave function (Haar wavelet function) as a 
basis function. Obviously, a key question is how to choose the appropriate basis function 
to model the signal efficiently. Figure 1-1 shows one of simple basis functions which can 
be used to model the signal.  
 

 
 

Figure 1-1. Haar scaling and wavelet functions. 
 
Also, all other basis functions can be generated by linear combinations of scales by j−2  
and translations by jk 2  of scaling and wavelet functions as followings: 
 

( ) ( ) { }mm ,1,0,1,,,2and2 −=∈−− Zkjktkt jj ψφ  
 
Now, we can construct function spaces with basis functions as followings: 
 

( )tφ ( )tψ

Haar scaling function Haar wavelet 
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The subspaces, V  and W  have the following properties. First, the subspaces ZjV j ∈,  
are nested such that  
 

mm ⊂⊂⊂⊂ − 101 VVV , 
 

and for each Zj ∈ , 
 

jjjjj WVWVV ⊥+=+  and 1  
 
where, ⊥  means that two function spaces are orthogonal to each other. 
 
Also, the unique decomposition is governed by the coefficients ka , kb  and kp , kq  in the 
form 
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Now, we can model the original signal as follows: 
 

( ) ( )∑ −=
k

n
knn ktctf 2, φ . 

 
( ) ( ) ( )tgtftf nnn 11 −− +=  

 
with ( ) 11 −− ∈ nn Vtf  and ( ) 11 −− ∈ nn Wtg .  
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1-3. Decomposition and reconstruction algorithm 
 
To find the ( )tf n 1−  and ( )tgn 1−  from nf , we can use following equations: 
 

∑

∑

−−

−−

=

=

l
lnklkn

l
lnklkn

cbd

cac

,2,1

,2,1

 

 
Also, the following equation can be used for the reconstruction of ( )tf n  from ( )tf n 1−  
and ( )tgn 1− . 
 

{ }∑ −−−− +=
l

lnlklnlkkn dqcpc ,12,12,  

 
 
1-4. Construction of 2-D wavelet functions 
 
2-D scaling and wavelet functions for Haar wavelet can be obtained by tensor products of 
1-D scaling and wavelet functions as followings: 
 

- Two-dimensional scaling function 
 

( ) ( ) ( )2121, tttt φφφ =  
 

- Two-dimensional horizontal wavelet 
 

( ) ( ) ( )2121 , tttth ψφψ =  
 

- Two-dimensional vertical wavelet 
 

( ) ( ) ( )2121 , ttttv φψψ =  
 

- Two-dimensional diagonal wavelet 
 

( ) ( ) ( )2121, ttttd ψψψ =  
 
 
1-5. Descriptions on the wavelet decomposition and reconstruction 
 
To illustrate the decomposition and reconstruction procedures in more detail, arbitrary 
sample data (similar to a LiDAR profile) are chosen and plotted in Figure 1-2. As shown 
in the Figure 1-3, each pair of data are added and subtracted after multiplied by ½ to get 
the decomposed data. Now, we have smoothed the signal in the left hand side and detail 
signal is in the right hand side. Also, these procedures can be applied to the smoothed 
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signals to obtain the smoothed and detail signals at the next level. Figure 1-4 shows the 
full decomposition steps from the original signals. One can also see that most of the data 
in detail signals are relatively small in amplitude. Moreover, if we have highly correlated 
signal, we can get many near-zero values in detail signals. Hence, we can use this 
characteristic of the signal decomposition to data compression by padding zeros in the 
position of which values are less than a predefined threshold value.  
 
Figure 1-5 shows the reconstruction procedures with predefined threshold value. As can 
be seen in the Figure 1-5, half of the data points are zeros so that we can save the data 
storage by using the decomposition and reconstruction procedures. 
 

points data ofnumber  Total
signals detailin  zeros ofnumber  Total=ratio  

 
Also, the RMS value between the original and reconstructed data can be used to 
determine the quality of reconstructed data and can be computed as follows: 
 

( )∑
=

−=
N

i

original
i

tedreconstruc
i XX

N
RMS

1
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Figure 1-2. Plot of sample data. 

 

32



 

 
 

Figure 1-3. Schematic diagram of decomposition and reconstruction steps. 
 

 
 

Figure 1-4. Schematic diagram which shows the full decomposition steps. 
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Figure 1-5. Reconstruction procedures with threshold value. 
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Figure 1-6. Reconstructed signal with threshold value. 
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1-6. Advantages of representing data with wavelets 
 
Data representation with wavelet has several advantages in viewing and data processing 
such as: 
 

- Viewing 
 

o Traditional signal analysis (Fourier transform) doesn’t indicate when an 
“event” occurs. 

o It is easier to get the information about the frequency component of a 
signal at a particular time. 

o Fourier analysis does not work well on discontinuous or constant shaped 
signals. 

 
- Processing 

 
o Decomposition can be done more efficiently by using the decomposition 

relation. 
o Fast algorithms to compute compact representation of function and 

datasets. 
 
 
 
2. Data processing 
 
 
LiDAR data come as scattered points so that it needs to be interpolated to get an evenly-
spaced gridded data format. In this study, four interpolation methods, Kriging, inverse 
distance to a power, nearest neighbor (NN), and multiquadratic were tested. Once we 
have obtained the gridded data, we can decompose it into a maximum decomposition 
level. However, decomposition procedures are performed up to only level II in this study 
for efficient analysis. As one can infer from the Figure 1-3, Figure 1-4, Figure 1-5, 
decomposition at level II is sufficient to analyze the data compression of LiDAR data 
because detail signals occupies most of the data storage even if we choose level II as a 
maximum decomposition level. The threshold values from 0 to 0.1 are chosen for the 
computation of the ratios and the RMSs defined in previous section. 
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Figure 2-1. Procedures applied for this study. 
 
 
2.1. Datasets 
 

- Data type : LIDAR data 
- Data size : 128128×  
- Data spacing : 0.69 m (after interpolation) 

 
 
2.2. Interpolation methods 
 
Four interpolation methods are used in this study. 
 

- ArcView (not included) 
- Fourier series + Polynomial (not included) 
- Kriging 
- Multiquadratic 
- Inverse Distance to a power 
- Nearest Neighbor 
 
* Underlined methods are applied in the analyses presented in this report. 

 
 
2.2.1. Kriging 
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Kriging is a geostatistical gridding method that has been known to be a useful tool in 
many fields. This method is a very flexible gridding method which produces visually 
appealing maps from scattered data. Kriging also attempts to express trends suggested 
from the data. 
 
2.2.2. Nearest neighbor 
 
The nearest neighbor gridding method assigns the value of the nearest point to each grid 
node. This method is effective for filling in the holes in the data in cases where the data 
are nearly on a grid with only a few missing points. 
 
2.2.3. Inverse distance to a power 
 
Inverse distance to a power is a weighted average interpolator. Data are weighted during 
the interpolation such that the influence of one point relative to another declines with 
distance from the grid node. Weighting is assigned to data through the use of a weighting 
power that controls how the weighting factors drop off as distance from a grid node 
increase. 
 
2.2.4. Multiquadratic 
 
Multiquadratic interpolation method uses basis kernel (radial basis) function which 
defines the optimal set of weights to apply to data points when interpolating a grid node. 
 
Multiquadratic : 22)( RhhB +=  
 
Where, h  is the anisotropically rescaled, relative distance from the point to the node and 

2R  is the smoothing factor specified by the user 
 
Default value for 2R : (length of diagonal of the data extent)2 / (25*number of data points) 
 
 
2.3. Wavelet functions 
 
 
Six types of wavelets were chosen for the discrete wavelet transform and analysis. Figure 
2-2 shows the various patterns in scaling (low-pass filter) and wavelet functions (high-
pass filter). The names of those functions are as followings: 
 

- Haar 
- db2 
- db3 
- db4 
- coif1 
- sym2 
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Figure 2-2. Decomposition low-pass filters used for decomposition of original data. 

 

 
Figure 2-3. Decomposition high-pass filters used for decomposition of original data. 
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2.4. Decomposition of 2-D data 
 
2-D data can also be decomposed into smoothed and detail signals by using 2-D scaling 
and wavelet function as described in section 1.5. Figure 2-4 shows the decomposition 
procedures for the 2-D data and Figure 2-5 shows one example of decomposed 2-D data. 
In the Figure 2-4, ‘A’ and ‘D’ denote the smoothed and detail signals, respectively. As 
can be seen in the Figure 2-4, 43  of original data points is assigned for detail signals so 
that many zeros can be found in detail signals.  
 
 

  
 
Figure 2-4. Schematic diagram of decomposition procedures for 2-D data. 
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Figure 2-5. Example of data decomposition at the level II (LiDAR data).
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3. Analysis on RMS errors and data compression 
 
 
Four types of interpolation methods, kriging, nearest neighbor, inverse distance to a 
power, and multiquadratic are used for this study. The analysis was performed based on 
the RMS errors and ratio of total zero values in detail signals to the total number of 
original data with respect to the threshold values.   
 
 
3.1. Interpolation by using Kriging method 
 

 
Figure 3-1. Interpolated data by using kriging method. 
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Figure 3-2. Computed RMS errors after reconstruction. 

 

 
Figure 3-3. Ratio of the number of zeros in detail coefficients to the total data size. 
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3.2. Interpolation by using nearest neighbor method 
 
 

 
Figure 3-4. Interpolated (Nearest neighbor) data. 

 

 
Figure 3-5. Computed RMS errors after reconstruction. 
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Figure 3-6. Ratio of the number of zeros in detail coefficients to the total data size. 
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3.3. Interpolation by using inverse distance to a power method 
  

 
Figure 3-7. Interpolated (Inverse distance to a power) data. 

 

 
Figure 3-8. Computed RMS errors after reconstruction. 
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Figure 3-9. Ratio of the number of zeros in detail coefficients to the total data size. 
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3.4. Interpolation by using Multiquadratic interpolation method 
 

 
Figure 3-10. Interpolated (Multiquadratic) data. 

 

 
Figure 3-11. Computed RMS errors after reconstruction. 

 

47



 
Figure 3-12. Ratio of the number of zeros in detail coefficients to the total data size. 
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3.5. Discussions 
 
Four interpolation methods, kriging, nearest neighbor, inverse distance to a power, 
multiquadratic were applied for the analysis of the optimal representation of LiDAR data 
in terms of RMS errors and the ratio of number of zeros to the total number of data points, 
respectively. As can be seen in Figure 3-2, Figure 3-3, Figure 3-5, Figure 3-6, Figure 3-8, 
Figure 3-9, Figure 3-11, and Figure 3-12, one can get almost identical results with each 
method except for the nearest neighbor interpolation method. Also, we can see that the 
RMS errors after data reconstruction are increasing with the larger threshold values for 
all wavelets. However, Haar wavelet appears to be the most inefficient one to represent 
the data based on the reconstruction and storage capability. The test results show that 
most of the wavelets tested have almost the same capability for the efficient 
representation of original data (test data). However, we need to take into account that the 
test data only covered a small ( mm 100100~ × ) and relatively flat area. This also means 
that the results could be affected by the characteristics and type of data. 
 
Table 3-1 shows the minimum RMS values for each interpolation when threshold value is 
set to 1. As shown in the Table 3-1, we can reconstruct the data with highest accuracy 
with the kriging method among the interpolation methods used for this study.  
 

Table 3-1. Minimum RMS errors for each interpolation method (threshold = 1). 
Interpolation methods Minimum RMS errors 

Kriging 0.018 
Nearest neighbor 0.030 
Inverse distance to a power 0.020 
Multiquadratic 0.020 

 
 
 
 
 
 
4. Comparison on level-by-level representation in terms of number of 

coefficient (space) it takes 
 
 
Figure 4-1, Figure 4-2 show the number of coefficients needed for the representation of 
data in the log scale at the decomposition level I and II, respectively. As can be seen in 
Figure 4-1, there exists a sharp decrease when the threshold value is 0.05, and we can see 
the low decrease rate after that point. Figure 4-2 also shows the number of coefficients at 
the decomposition level II. However, it does not show much difference compared with 
Figure 4-1. This means that the decomposition level I is sufficient for the efficient 
representation from the storage point of view. 
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Figure 4-1. Plot of number of coefficient at decomposition level I. 
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Figure 4-2. Plot of number of coefficient at decomposition level II. 
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5. Specific issues related to an elongated shape (highway) of a data set  
 
 
Maximum decomposition level is basically determined by the number of original data 
points and wavelet functions. Figure 5-1 shows one example of decomposition with the 
Haar wavelet. As can be observed in Figure 5-1, one can only decompose the original 
data up to level II if 164×  original data are given. This is a commonly used procedure 
for the decomposition of such data. Another procedure is to decompose the data, for 
example, row by row up to a maximum level for each row, and do the same for all 
columns. Figure 5-2 shows the schematic diagram for this decomposition procedure. 
 
 

 
Figure 5-1. Traditional 2-D data ( 164× ) decomposition at level II (Method I). 
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Figure 5-2. 2-D data decompositions row by row and column by column (Method II). 

 
 
 
 
 
6. Simulation of Gaussian bell shaped data with mm 5050 ×  size. 
 
 

- Simulation of mmm 105050 ××  Gaussian bell shaped data to test 
theperformance of the wavelet representation at the edges. 

 
o 2-D Gaussian bell shaped data are simulated by following function and 

parameters: 
 

1=== yx σσσ  
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  ( ) ( ) 10,100, +×= yxfyxF  
 

o Name of wavelet used for the test: ‘db2’ 
 
 
Figure 6-1 shows various ways to handle the problem of border distortion. Those can be 
zero padding, symmetrization, first derivative interpolation, and constant extension at the 
edge. As can be expected, original data can be reconstructed even if we choose different 
edge controlling methods because we have information on the method used for wavelet 
transformation. However, we could have somewhat different results in wavelet 
transformed data. Figure 6-2 shows profiles of 2-D smoothed and detail signals after 
decomposition of Gaussian bell shaped data. As shown in Figure 6-2, there is not much 
difference in smoothed signals for all cases but we can see large distortions near the 
edges in detail signals when we use zero padding method. Therefore, we need to be more 
careful in dealing with zero padding method in decomposition procedures. 
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Figure 6-1. Different ways of handling the problem border distortion. 
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Figure 6-2. Border distortions in wavelet transforms. 

 
 
 
7. Analysis on the selected elongated portion of LiDAR data 
 
 
Figure 7-1 shows an elongated sample of LiDAR data. Two methods were tested for the 
efficient representation of elongated data as mentioned in section 5. As can be observed 
in the Figure 7-2 and Figure 7-3, method II is slightly better in efficient representations 
because we can get the smaller number of coefficients in wavelet transform in most cases 
(wavelets). Table 7-1 shows the enhancement in data storage when we choose method II 
for elongated data (threshold = 0.4). 
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Figure 7-1. One sample of elongated LiDAR data.  
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Figure 7-2. Plot of number of non-zero coefficients with respect to threshold values by 

method I. 
 

 
Figure 7-3. Plot of number of non-zero coefficients with respect to threshold values by 

method II. 
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Table 7-1. Enhancement of data storage from the decomposition method II. 
 

Wavelet names Enhancement [%] 
Haar 30.2 
Db2 5.1 
Db3 10.4 
Db4 15.9 

Coif1 11.2 
Sym2 5.1 

 
 
 
8. Descriptions on the software developed for demonstration 
 
Left hand side part of the Figures 8-1 shows the area which displays the decomposed 
image at each level. Right hand side part of the figure includes the various menus, ratio of 
zero values, and histogram of original data. For the demonstration, Haar wavelet and 
decomposition level I and II are chosen, respectively, and Figure 8-1 and Figure 8-2 show 
the decomposed data with parameters used. Also, Figure 8-3 shows the reconstructed data 
from the wavelet transformed data. 
  
Followings are the names of the menu and its descriptions of the software. 
 

- Data load: It is used for the loading the gridded data. 
 

- Wavelet functions : Wavelet function can be chosen for the wavelet 
decompositions 

 
- Level: decomposition level can be specified with this menu. 

 
- Threshold: we can set the threshold value to check the saved data storage. 

 
- Reconstruction: If you check the box, you can see the reconstructed image 

with parameters set in the menu. 
 

- Run: Run the program with parameters set in the menu. 
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Figure 8-1. Decomposition of data at level I. 
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Figure 8-2. Decomposition of data at level II. 
 
 

58



245

246

247

248

249

250

251

Reconstructed image

20 40 60 80 100 120

20

40

60

80

100

120

 
Figure 8-3. Reconstructed data by using given parameters. 
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ABSTRACT 
 
Terrain modeling usually requires some type of interpolation between the measured terrain points. Using 
modern airborne and spaceborne sensors, terrain point observations are becoming available in a variety of 
formats with widely differing characteristics. More importantly, the point distribution, accuracy and 
density can vary greatly, depending mostly on the sensor type and the data acquisition method used. This 
paper analyzes and compares the most important methods for terrain modeling, in particular, in the case of 
low point density and irregular point distribution. A new method is proposed for surface modeling, which 
is based on a two-dimensional Fourier series interpolation combined with a polynomial extension. The 
Fourier series technique as a powerful method to describe 1D/2D signals has been widely used in several 
diverse applications, including surface modeling. However, because it is based on evenly spaced input data 
it cannot be directly applied for surface approximations from irregularly spaced points. The proposed 
approach, therefore, aims to determine the coefficients in the case of uneven point distributions. The key 
idea of the concept is that a least squares adjustment is formulated to obtain the Fourier series coefficients. 
Since the Fourier series cannot model surface trends well, a polynomial extension has been added to model 
the surface trend, thus splitting the approximation task into two parts, global trend and local variation 
modeling. The proposed surface modeling method has shown promising performance even in the case of 
low point density and scattered point distribution. 

 
 

INTRODUCTION 
 
Modeling of terrain surface plays an important role in many applications. Orthophoto production, 
telecommunication, engineering design, floodplain mapping, etc. all require surface data with different 
level of detail and accuracy. There are different sources of digital elevation data. Government agencies in 
North America and Europe provide base digital elevation models mostly derived from old topographic 
maps by contour digitization; these models usually describe larger areas and are not so detailed and 
accurate. A lot of applications, however, demand current, more detailed and accurate terrain models. There 
are currently three main technologies that provide surface data with increased level of accuracy and detail. 
The traditional method has been photogrammetry using stereo image pairs. DEM generation by analytical 
methods has been very time consuming. The introduction of digital photogrammetry automated a lot of the 
tasks, basically laying down the foundation for inexpensive orthophoto production in the mid 90’s. 
Nevertheless, DEMs created on digital photogrammetric workstations still require substantial manual 
editing, therefore it is still labor intensive. Recently, LIDAR technology has become the primary source of 
surface data while InSAR has grown to be the secondary source. Surface data created by these 
technologies come with different point density, point distribution and error characteristics.  
 
There are three commonly used data structures to store digital elevation data; Triangulated Irregular 
Networks (TINs), regular grid structure, and lines of equal elevation (contours). All representation 
methods have their own advantages and disadvantages, depending on the terrain characteristics and the 
intended applications. Grid structure is a very efficient format for analysis purposes as it makes the 
comparison of different datasets very simple. In addition, most of the visualization tools and processing 
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techniques are based on grid structure. Therefore, grid structure is the most common representation of 
terrain surface and is typically called DEM (DTM or DSM are also used). In practice, there is a little bit of 
inconsistency in the usage of the different terms. Therefore, here the definition of each term is included 
(Maune at el., 2001). A Digital Elevation Model (DEM) is elevations of the terrain with uniformly spaced 
z values without vegetation and man-made features. This bare earth DEM is generally synonymous with a 
Digital Terrain Model (DTM). A Digital Surface Model (DSM) is similar to a DEM or DTM except that it 
depicts the elevations of the top surfaces of buildings, trees, and other features elevated above the bare 
earth.  
 
Most of the new data acquisition technologies deliver elevation data in irregular point distribution, 
therefore the generation of DEM in regular grid structure requires interpolation. The next section gives a 
brief overview of the existing methods for terrain interpolation, and then the third section introduces our 
proposed method, followed by test results. 
 
 

EXISTING INTERPOLATION METHODS 
 
Creating a gridded surface from irregularly spaced data requires the estimation of elevation values at the 
grid points, which is based on interpolation of the input data. There are several interpolation methods used 
for terrain approximation; each has its advantages and disadvantages. Similarly, the surfaces to be modeled 
can have different characteristics and there is no single interpolation technique that is the best for every 
situation. The interpolation methods can be grouped numerous ways. One of the possible groupings is 
whether the method is using the local surrounding sample points to determine an unknown elevation or all 
sample points together determine the unknown points. Methods of the first group usually preserve the 
elevation data at the sample points, while the others apply some kind of surface fitting to the sample data 
to determine the unknown elevations, which does not necessarily honor the sample points. This section 
provides a review of the existing, most commonly used interpolation methods for terrain data.  
 
Inverse distance weighted interpolation 

Inverse distance weighted interpolation (IDW) determines the unknown values as a weighted average of 
the surrounding known points. The weights are a function of the inverse distances between the unknown 
and measured points. This method works in the case of both regular and irregular point distribution, but it 
requires a parameter such as search radius to select sample points for the interpolation around an unknown 
point. However, it has drawbacks for irregular point distribution. In general, the method is not well suited 
for terrain data as the resulted surface has a dimpled effect at the measured locations. Figure 1 illustrates 
this effect in the case of LIDAR data. 
 

 
Figure 1. Dimpled effect around measured points in the case of IDW. 
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Natural Neighbor Interpolation 

Natural neighbor uses area based weighting to determine the unknown elevations. It works for both 
irregular and regular point distributions. The algorithm is based on the Delaunay triangulation and Voronoi 
diagram. The Voronoi neighbors of the unknown point are determined in a way that the insertion of the 
unknown point would result in the Voronoi neighborhood of the measured points. Then these Voronoi 
neighbors are used to determine the elevation of the unknown point. One advantage of the method is that 
since the method itself founds the surrounding measured points to be included in the determination of the 
unknown point, there is no need for parameters such as search radius that has drawbacks when the data 
points have irregular distribution. After the points to be included in the calculation are found, the unknown 
elevation is calculated as a weighted average of these elevations. The weights are based on the common 
area of the Thiessen polygon of the unknown point and the Thiessen polygons of each selected point 
before the new point has been inserted to the triangulation. Since the weights are based on the area that 
would be stolen from the Thiessen polygons of the surrounding measured points if the unknown point is 
inserted to the network, this method is also called as ‘area stealing’ interpolation. The interpolated surface 
passes through the sample points and it is constrained by the input data range, and therefore peaks and 
valleys appear in the interpolated surface only if they were measured.  
 
Spline 

Spline interpolation fits a mathematical function to some neighboring measured points to determine the 
value at the unknown locations, like bending a sheet of rubber through the measured points. This method 
results in a smooth surface that passes through the sample points and in general gives a very good 
representation of smoothly changing terrain (no sudden elevation changes, such as buildings and other 
man-made objects). In addition, it allows the representation of unsampled peaks and valleys. This is a very 
useful method if the goal is to derive good quality contours. 
 
Kriging 

Kriging is named after a South African mining engineer, D. G. Krige who developed the technique. 
Kriging estimates the unknown values with minimum variances if the sample data fulfills the condition of 
stationarity, which means that there is no trend in the data, such as main slope. Similar to some other 
methods kriging calculates the unknown values as a weighted average of the sample values, however the 
weights are based not only on the distance between the sample points and unknown point but also on the 
correlation among the sample points. The first step in kriging is the determination of the variogram, which 
is found by plotting the variances of the z values of each sample point with respect to each other sample 
point versus the distance between points. Once the experimental variogram is computed, the next step is to 
fit a mathematical function to the variogram that models the trend in it. This fitted polynomial is called 
model variogram, and is then used to compute weights for the sample points for the calculation of 
unknown elevations. This method is called ordinary kriging. 
 
If stationarity of the data is not fulfilled, universal kriging can be used. In this case the main trend is 
modeled by a polynomial function, then the difference between this polynomial and the actual values can 
be considered stationary. Ordinary kriging can be performed on the residuals and after kriging the 
polynomial function can be added to the interpolated residuals to get the interpolated values. Kriging is an 
exact interpolation method; the interpolated surface passes through all the sample points. It works with 
regular and irregular sample point distributions.  
 
Trend Surface Analysis 

Trend surface analysis approximates the surface by a fitted polynomial to the sample points. The proper 
order of the polynomial can be chosen considering the rule that any cross-section of an n-order surface can 
have at most n-1 alternating maxima and minima. The coefficients of the fitted polynomial to the sample 
data can be determined by least squares adjustment, minimizing the square sum of the differences between 
the z values of measured points and fitted surface at the sample points. Obviously, increasing the order 
means a better fit at the sample locations, but between the points it can result in large and sudden changes 
due to the lack of constraint. In common practice, the order of the polynomial normally does not exceed 3-
5. 
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This method works for both regular and irregular sample point distribution, however it has the behavior to 
change very rapidly between sample points at locations where the sample points are far from each other, 
especially near the borders of the interpolated surface. The method is appropriate to model the main trend 
in a surface, but it cannot model local irregularities. Therefore, it is not always applicable and usually is 
applied to model trend of smaller areas. 
 
Orthogonal basis functions 

There are a few methods that reconstruct a function by using a linear combination of a set of orthogonal 
basis functions. For example, Fourier and wavelet transformations transform the data from time or space 
domain to frequency domain. By inverse transformation using the coefficients, the original surface can be 
reconstructed and the surface values can be calculated at the unknown locations too. The numerical 
methods of forward and backward transformation work only for regular point distribution and therefore in 
their original form these series are not directly useable for the interpolation of irregularly distributed 
sample points. 
 

 
FOURIER SERIES-BASED INTERPOLATION OF IRREGULAR POINT DISTRIBUTION 

 
The Fourier series technique is a powerful method to approximate one and two-dimensional signals and 
has been widely used in a variety of applications. The discrete Fourier series is based on evenly spaced 
input data and thus it cannot be directly applied to irregularly distributed surface points. Therefore, a 
different approach has been proposed to determine the coefficients, which will be described in detail in the 
following. 
 
Fourier series interpolation in two-dimensional space 

A continuous function z(x,y) which is periodic by Tx in x direction and Ty in y direction can be expanded 
into Fourier series : 
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If the sum is calculated until a finite number of harmonics in both directions, the Fourier series gives an 
approximation of z(x,y) function. The more harmonics are calculated, the better the approximation function 
fits to the original one. If the continuous z(x,y) function is sampled at discrete locations, the calculation of 
the Fourier series coefficients is identical with the calculation of the discrete Fourier transform. The 
discrete Fourier-transform is based on evenly spaced point distribution and therefore it cannot be directly 
applied to approximate surfaces from irregularly distributed points. Therefore, a different approach is 
proposed to determine the coefficients. The concept is that a least squares adjustment be formulated, which 
is not sensitive to the input data spacing.  
 
Assuming the surface is sampled at m locations, we want to approximate it with a Fourier series calculated 
until the nth harmonics in both directions. Provided that the number of the unknown coefficients is less than 
m, the coefficients of the Fourier series for the best fit are calculated by least squares adjustment with the 
condition that the sum of the square difference at the known points is minimum: 
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The sampling theorem states that if a continuous signal is sampled at least twice the frequency of the 
highest frequency in the signal then the signal can be completely reconstructed from the samples (Nyquist 
criterion). Therefore, the point density in x and y directions, in terms of defining the minimum sampling 
distance determines the maximum spatial frequency that can model the surface (whether it is enough to 
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properly describe the terrain is another question). Consequently, the maximum number of coefficients of 
the Fourier series in both x and y directions can be calculated. For that reason, it is pointless to calculate 
until a higher frequency, as going further, only noise will be modeled in the data. In practice, the fit of the 
approximated surface could be very good at the measured points, but between the known points high 
waves will be produced due to the lack of constraints there. 
 
To illustrate the impact of the number of coefficients used for the surface approximation, Figure 2 shows a 
surface reconstructed from a small and large number of coefficients, respectively. Using data of 1001 
LIDAR points, the Fourier series representation was first calculated until the 2nd harmonics (5 coefficients, 
Figure 2a) and then to the 10th harmonics (201 coefficients, Figure 2b) in both directions.  
 

  
a) b) 

Figure 2. Approximation by Fourier series, calculated until the 2nd and.10th harmonics. 
 
In the case of 10 harmonics, the fit is excellent at the measured points, but between these points there are 
high waves due to the lack of constraints at these locations. If the Fourier series is calculated until only the 
2nd harmonics in both directions, the approximation surface is smoother, there are no high waves, but the 
fit is not good at the measured points. These two cases clearly show the main properties of the Fourier-
based interpolation. If the surface has a trend, especially due to irregular point distribution, a series of sine 
and cosine waves cannot always provide a good representation of the surface. The more harmonics of the 
Fourier series are calculated, the better the fit is at the measured points, but high frequency results in a 
wavy appearance of the interpolated surface. With a large number of harmonics, the fit at the measured 
points can be nearly perfect, but the interpolated surface may not have a good relation to the ground 
surface at all, due to the high wave amplitudes between the known points. Similarly, a small number of the 
Fourier series coefficients provides only a poor model of the surface and produces unacceptable 
differences at measured points. Consequently, a trade-off has to be found to obtain a smooth enough 
surface and an acceptable fit at the known points. This contradiction, however, cannot be solved using 
Fourier series interpolation itself. 
 
Extending the Fourier series based interpolation method with a polynomial term 

As a refinement to the Fourier series interpolation, a polynomial extension has been introduced to model 
the surface trend, thus splitting the approximation task into two parts, global trend and local variation 
modeling. 
  
Figure 3a illustrates the approximation of the same 1001 LIDAR point surface, calculated as a combination 
of a first order polynomial (slant plane) and Fourier-series, calculated until the 7th harmonics in the LIDAR 
scan direction and 5th harmonics in the other direction (flight line). More harmonics were calculated in the 
scan direction due to the higher point density along the scan lines. The advantage of calculating different 
number of harmonics in the scan direction and perpendicular to this direction is that it accommodates for 
the more information in the scan direction due to the higher point density along the scan lines. Of course 
generally the scan lines are not lying in one of the main coordinate directions, but can be transformed to 
this position. Also, if the point density is balanced in both directions, then obviously there is no need for 
using different number of harmonics. Figure 3b depicts the modeled surface in the case of a 3rd order 
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polynomial extension with the same degree Fourier series, clearly demonstrating that this combination 
delivers a very good surface representation. 
 

a) b) 
Figure 3. Fourier series approximation with first (a) and third (b) order polynomial extension. 

 
 

TEST RESULTS  
 
The test areas were selected from two different LIDAR surveys with different point densities. The first two 
areas are of high point density while the third area has a very low point density. Figure 4 shows the three 
surfaces; the original LIDAR points are marked with red and the reconstructed surface is shown in green. 
In each case, an about 25 m by 25 m area was selected for the analysis. The areas were selected to assess 
how the proposed method works for different surface characteristics. The first (a) and third (c) areas 
represent typical smooth flat and sloped terrain situations with moderate elevation changes while the 
second (b) area has substantial elevation differences, reaching almost 8 m over the rather small area.  
 
Based on the main characteristics of the three surfaces as well as point densities, the number of harmonics 
for the Fourier series as well as the order of the polynomial extension has been selected to compute the 
surface approximation by the proposed method. Table 1 contains the results, including important statistics 
along with LIDAR point density and number of points in the test area. Since the vertical accuracy of the 
LIDAR points is about 15 cm, the number of points where the difference between the measured and 
interpolated value is bigger than 15 cm is also shown.  
 

Parameters 
Fourier Surface 

Point 
density 
[p/m2] 

No. of 
points Polynomial 

n m 
RMS No. of points 

dev>15cm 
Dev >15cm 

[%] 

a 1.3 936 5 5 5 0.028 1 0.10 
b 1.3 866 5 5 5 0.042 1 0.11 
c 0.13 267 3 3 3 0.030 1 0.37 

 
Table 1. Performance statistics. 

 
The goodness of an interpolation method can be characterized by the discrepancies of the interpolated 
values from the measured values, which is expressed in the RMS terms. For all the three test areas, the 
RMS values are in the cm level, well within the vertical accuracy of the measured LIDAR points. As 
expected, the steep terrain (b) has the largest value. Of course equally important is how the interpolated 
surface behaves between the measured points. As shown in Figure 4, the method created nice, natural 
looking surfaces between the measured locations. 
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a) 

 

b) 

 

c) 

 

 
Figure 4. Various surface areas modeled by the proposed technique. 
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In summary, the proposed method has shown good performance with different point densities and works 
well with both regular and irregular point distribution. The interpolated surface is not constrained to the 
input data range – unsampled peaks and valleys can be represented to a certain extent. The method has the 
advantage that a few outliers do not disturb the interpolated surface; the surface maintains its natural shape 
in contrast to some other interpolation techniques. Based on the initial experiences, the method seems to be 
a very accurate surface modeling tool for smaller areas. The size of the areas to be modeled can be chosen 
by considering the terrain characteristics. In the case of smooth, rolling terrain the area can be larger, while 
surface with substantial undulations must be restricted to small areas. Obviously, any area size can be 
handled by segmentation; dividing the area into smaller surface patches and then merging them after the 
interpolation. Near the edges the interpolated surfaces often have unnecessary waves due to the lack of 
constraint from one side, therefore it is usually better to work with some overlap and cut around the edges. 
Due to the finite number of Fourier harmonics, this method is not suitable for modeling sharp, sudden 
changes and discontinuities like breaklines, buildings and other man-made objects.  
 
 

CONCLUSIONS 
 
A Fourier series based interpolation method combined with polynomial extension has been introduced. 
The traditional numerical procedure to calculate Fourier coefficients is based on regular input point 
distribution and therefore is not suitable for irregular point distribution. The proposed solution calculates 
the Fourier coefficients by a least squares adjustment. Tests have shown that because the Fourier series is 
calculated until finite harmonics, this representation has difficulty with modeling surface trends. Therefore, 
a polynomial extension has been introduced to circumvent this problem. In the combined solution, the 
polynomial part can nicely model trends in the surface while the Fourier series can adequately describe the 
smaller local changes in the data. This extended Fourier series based interpolation has shown promising 
results for modeling smoothly rolling terrain without any breaklines and other discontinuities. Besides, it 
has produced nice natural looking models for terrains without breaklines. The technique works well with 
both regular and irregular point distribution. A further improvement could be expected from using wavelet 
transformation as it is known for better modeling of local discontinuities and sudden changes in the data.  
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ABSTRACT 
 
Direct sensor orientation, measuring sensor position and attitude from physical parameters is rapidly 
spreading in the mapping practice. Knowing and maintaining the spatial relationship between the 
navigation and imaging sensors is essential in achieving mapping accuracy. The critical component of this 
relationship is the rotational component or boresight. In case of any boresight misalignment between the 
camera and the navigation system, the exterior orientation parameters of an image calculated from the 
navigation solution are not correct. This paper describes an adjustment method to determine the boresight 
misalignment using at least one ground control point that can be identified in a stereo image pair. In 
general, the sensor mounting bias between the camera and navigation system is defined by an offset vector 
and rotation between the two systems. Since the critical component is the rotation, our method focuses only 
on finding the boresight misalignment angles. The adjustment is based on the collinearity equation and 
requires an image pair and at least one known ground point with measured image coordinates.  

 
 

INTRODUCTION 
 
The determination of the exterior orientation parameters is a prerequisite for reconstructing the object space 
from images. Traditionally the determination of the orientation parameters is solved indirectly by using 
aerial triangulation (AT), which requires a number of known ground control points. Although a lot of the 
tasks of AT have been automated, it still requires interaction and supervision of skilled operators and needs 
a significant time of the mapping process.  
 
In the last few years direct orientation has become a powerful and effective way of obtaining sensor 
orientation by direct physical measurements. Using integrated GPS/INS systems, the sensor orientation 
parameters can be determined directly without aerial triangulation. There have been several publications 
analyzing the performance difference between the direct and indirect orientation techniques. For example, 
Habib (2001) emphasizes the difference in georeferencing performance in the case of the presence of an 
error in the camera model. In general, indirect orientation performs better than direct orientation since the 
calculated EO parameters from AT compensate for the inaccuracy of the interior orientation. This 
mechanism is missing from direct orientation and therefore, the whole process is sensitive to sensor 
modeling errors. 
 
From the applications’ side, the use of GPS/INS based direct orientation is mandatory for LIDAR and 
RADAR systems and indispensable when using line cameras, where each scanline has its own exterior 
orientation parameters. In addition, direct orientation can be advantageous for frame cameras, too; see 
(Cramer, 2000). An important advantage is the removal of limitations of the flight path – AT needs block 
geometry of images. Certain applications require image acquisition over straight man-made and natural 
objects, such as power lines, coastlines (corridor mapping), and the like. In these cases, the block structure 
is simply not economical. In addition, image matching, which is required for AT, can be very problematic 
or impossible in areas such as forested areas, large water surface areas or areas with no texture. In these 
cases tie points cannot be found for AT and only direct georeferencing can solve this problem. 
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If direct orientation is used to determine the exterior orientation, the geometric relationship between the 
different sensors has to be known and maintained since the orientation sensors and the imaging sensor are 
spatially separated.  
 
To relate the GPS measurements to the INS system, the lever arm (the vector between the GPS antenna and 
the INS) must be known. Since the navigation solution is always calculated in the INS frame and we need 
the orientation of the camera, the spatial relationship between the INS and the camera system also has to be 
determined. An offset vector and a rotation matrix between the two systems can describe this relationship. 
The critical component is the rotation since the object distance amplifies the effect of any angular 
inaccuracy, while the effect of any offset error does not depend on the flying height. The shifts can be 
determined using conventional terrestrial survey. The usual method of the determination of the boresight 
misalignment is to determine the orientation matrix of the images in the block by AT and then compute the 
mean rotation matrix between the GPS/INS provided orientations and the image orientations from AT 
(Mostafa, 2001). The calibrated boresight misalignment angles should remain constant as long as there are 
no relative movements between the two sensors. Once the boresight misalignment is known, the image 
orientation can be calculated by rotating the GPS/INS provided attitudes by the boresight matrix. 
 
The number of medium resolution digital cameras, such as 4K by 4K systems used in airborne surveying, is 
steadily growing. Although AT-based orientation is possible, due to the smaller footprint, a large number of 
images is required to cover the same area at the equivalent ground resolution. This, in turn, results in an 
increased number of tie points and thus makes the AT process more time-consuming and subject to more 
errors. The image per ground control point ratio is also much larger. In summary, only direct orientation 
can offer an economically viable solution for that type of camera. Of course, for precise boresighting, AT 
must be used.  
 
This paper discusses the feasibility of determining the boresight misalignment without AT, assuming the 
availability of at least two overlapping images and one known ground point (measured in both images). 
Theoretically, it is possible to determine borsesight misalignment angles if at least one ground control point 
measured in a stereo pair is available. However, as there are other error sources besides boresight 
misalignment, which influence the computation, the results must be taken with caution. The next section 
describes the proposed method, which is a simple least squares adjustment based on the collinerity 
equation. Assuming the presence of different errors in the exterior and interior orientation, the RMS of the 
determined boresight misalignment angles is analyzed in the following section. The last section presents 
simulation results with respect to the performance measured in pointing accuracy on the ground. 
 
Motivation for this research effort is not to find a substitute for the conventional AT-based boresighting, 
but rather to introduce a method that can provide support for real life situations when the AT process is 
simply not available. For instance, if the sensor mounting has been disturbed during a flight and there was 
no block flown to perform a regular AT procedure, the proposed method can provide a method to salvage 
the data. Similarly, the technique can be used as a diagnostic tool to check the stability of the boresight or 
any change in the sensor model and so on. 
 
 

SIGNLE GROUND CONTROL POINT BORESIGHT DETERMINATION METHOD 
 
Initially we assume that the coarse rotation angles between the INS and camera frames are known and we 
are only looking for small misalignment angles. (Coarse angles mean the nominal alignment angles 
between the two systems; for example 90- or 180-degree κ rotation). Therefore, the differential rotation 
matrix of small angles is applied.  
 
The adjustment is based on the collinerity equation extended by the three unknown boresight misalignment 
angles. To derive the modified collinerity equations, the following can be written: 
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where 

ijr  are the elements of the rotation matrix between the mapping and INS frames 

ijb  denotes the elements of the boresight matrix, the rotation matrix between camera 
and INS frames 

ZYX ,,  are coordinates of a ground point in the mapping frame 

',',' ZYX  are coordinates in the mapping frame, rotated parallel to camera system 

000 ,, ZYX  are perspective center coordinates in the mapping frame 

',',' 000 ZYX  are perspective center coordinates in the rotated mapping frame 

 
After rearranging: 
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The collinerity equation modified by the boresight misalignment angles: 
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where 

yx,  are the measured image coordinates of the ground control point 

ijq  are the elements of the boresight corrected rotation matrix between the mapping and 
INS frames, orientation of the image 

dω, dϕ, dκ are the unknown boresight misalignment angles (these are contained in ijq ) 
 
The boresight misalignment angles can be found if the object coordinates of at least one ground point and 
its image coordinates are known. Applying the collinearity equation for both images, there are four 
equations with three unknowns.  Therefore, a least squares adjustment can be formed for the misalignment 
angles, minimizing the square sum of the differences between the measured image coordinates and the 
calculated image coordinates, derived from the known ground coordinates. Since the reliability of the 
image coordinate measurements is the same in the two coordinate directions and no correlation between 
them is assumed, identity matrix is used as weight matrix in the adjustment. Obviously, in the special case 
of adjusting only for dκ misalignment angle, one unknown, one image is enough. As mentioned above, 
initially the coarse rotation angles between the INS and camera frames were assumed to be known. 
However, the method can be executed in an iterative way, and thus, the boresight angles can be found even 
if the coarse angles are not known. Although the method requires two overlapping images and at least one 
known ground point, it is advantageous to use more images and more ground points for better reliability. 
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The adjustment does not deal with the fact that the input parameters such as the attitude angles of the INS, 
the position of the perspective centers, and the camera model may be subject to errors. The method always 
works, but careful consideration should be given to the circumstances as errors from various sources may 
substantially affect the quality of the results. The potential errors are the following: 
- orientation from the navigation solution has an error budget (shifts, attitude errors), 
- camera model is not correct (focal length, principal point shift), 
- measured image coordinates are affected by random errors (±5µm), 
- ground control point coordinates are not error free. 
 
In our simple adjustment method the only unknowns are the boresight misalignment angles; therefore, 
different errors above will affect the results as the resulted angles try to compensate for various error 
sources. In other words, the resulted boresight angles could be slightly different for all of the image pairs – 
each one is optimal for the image pair that was calculated from. In the following, the reliability of the 
resulted boresight misalignment angles will be studied by assessing RMS of the boresight misalignment 
angles in the presence of the above errors. 
 
 

SIMULATION RESULTS OF THE PROPOSED METHOD 
 
To analyze the effect of different error sources on the resulted boresight angles, simulations were carried 
out with two different camera types. The first one is a traditional film-based aerial camera (c=150mm); the 
second camera type is a 4K by 4K digital camera (c=50mm). These two camera types were selected 
because the large-format aerial camera symbolizes the ultimate performance limit while the 4K by 4K 
digital sensor represents the emerging digital cameras. In the simulations with both camera types, a 
stereopair with 60% overlap was used. To analyze the effect of the flying height, the simulations were 
carried out at three different flying heights (400m, 1200m, 3000m). To express the accuracy of the adjusted 
boresight misalignment angles, the RMS, derived from the differences between the resulted boresight 
misalignment angles and their known (preset) values were calculated.   
 
Simulation results with a traditional film-based aerial camera 
 
Table 1 contains the assumed standard deviations of the camera and orientation parameters in the case of a 
traditional film-based aerial camera. These values are intentionally larger than the results of a top of the 
line aerial camera calibrated by the USGS. 
 

Table 1. Assumed random errors of traditional aerial camera 
 

Error source Standard deviation 
Image coordinates ± 5µm 
Focal length ± 10µm 
Principal point ± 10µm 
Perspective center position ± 10cm 
INS attitude ± 10” 

 
The simulations assumed a ± 5µm image coordinate measuring error. To analyze the effect of the 
uncertainty of the camera model, a ± 10µm standard deviation of the focal length and ± 10µm standard 
deviation of the principal point were assumed. (In the case of the 4K by 4K digital camera model these 
standard deviation values could be too optimistic since this type of camera is less stable.) Another error 
source, the position of the perspective centers, which mainly depends on the reliability of the GPS 
positioning, was characterized by ± 10cm standard deviation. For the INS attitude angles, a noise with ± 
10” standard deviation was applied. The ground control point coordinates were considered to be error free 
since they can be determined at ±1cm accuracy and the effect of this uncertainty is negligibly small 
compared to the effect of other error sources. 
 

72



Table 2 contains the RMS of the resulted boresight angles in the presence of different error sources in the 
case of different flying heights. The effect of each error source, separately and combined were studied. The 
magnitude of the different error sources can be found in Table 1. As we wanted to analyze the influence of 
the location of the used ground point on the reliability of the boresight misalignment results, the tables 
contain the RMS results in the case of using a ground point in nadir position, in the center of the model 
area, and a ground point in Gruber location 6. Simulations for ground points in all Gruber locations were 
performed and as expected, all the Gruber points in the corners of the model area (not in nadir position) 
gave approximately the same results as shown for Gruber location 6 in Table 2.  
 

Table 2. RMS of boresight angles at traditional film-based aerial camera 
 

Error source RMS [deg] Center point RMS [deg] Gruber location 6 
H=400m ωωωω ϕϕϕϕ κκκκ ωωωω ϕϕϕϕ κκκκ 
Image coordinates 0.001 0.001 0.005 0.002 0.002 0.003 
Focal length 0.001 0.001 0.004 0.002 0.002 0.003 
Principal point 0.004 0.004 0.004 0.003 0.003 0.004 
Focal length+princ.point 0.004 0.004 0.004 0.004 0.003 0.004 
Perspective center position 0.010 0.009 0.032 0.015 0.019 0.029 
INS attitude 0.002 0.002 0.008 0.004 0.005 0.008 
Persp.cent.+INS attitude 0.010 0.009 0.035 0.015 0.019 0.030 
All 0.010 0.010 0.033 0.015 0.019 0.030 
H=1200m ωωωω ϕϕϕϕ κκκκ ωωωω ϕϕϕϕ κκκκ 
Image coordinates 0.001 0.001 0.004 0.002 0.002 0.003 
Focal length 0.001 0.001 0.004 0.002 0.002 0.003 
Principal point 0.004 0.004 0.004 0.003 0.003 0.004 
Focal length+princ.point 0.004 0.003 0.004 0.003 0.003 0.003 
Perspective center position 0.004 0.003 0.012 0.005 0.007 0.010 
INS attitude 0.002 0.002 0.008 0.004 0.005 0.007 
Persp.cent.+INS attitude 0.004 0.004 0.014 0.006 0.008 0.012 
All 0.006 0.005 0.013 0.007 0.008 0.013 
H=3000m ωωωω ϕϕϕϕ κκκκ ωωωω ϕϕϕϕ κκκκ 
Image coordinates 0.001 0.001 0.004 0.002 0.002 0.003 
Focal length 0.001 0.001 0.004 0.002 0.002 0.003 
Principal point 0.004 0.004 0.004 0.003 0.003 0.004 
Focal length+princ.point 0.004 0.004 0.004 0.004 0.003 0.004 
Perspective center position 0.002 0.002 0.006 0.003 0.003 0.005 
INS attitude 0.002 0.002 0.008 0.004 0.005 0.007 
Persp.cent.+INS attitude 0.003 0.003 0.009 0.004 0.006 0.009 
All 0.004 0.004 0.009 0.005 0.006 0.009 

 
The first row shows the RMS values caused only by the image coordinate measuring error. The next three 
rows illustrate the effect of the uncertainty of the camera model, the focal length, the principal point shifts 
and their combined effect. An uncertainty in the focal length, in addition to the image coordinate measuring 
error, does not have an effect on the resulted boresight angles if they were determined by using a ground 
point near the center of the model area. The uncertainty of the principal point shift mainly shows up in the 
ω and ϕ results. If only the interior orientation uncertainty were present, the resulted boresight 
misalignment angles would be more reliable if they were determined by using a ground point farther away 
from the nadir. Looking at the impact of the uncertainty in the INS attitude and the perspective center 
positions, the ω and ϕ results are better using a center point; κ is little bit better in the case of a point farther 
from the nadir. If we consider the combined effect of all the uncertainties, we get more reliable ω and ϕ 
results using a center point, but worse κ than in the case of using a ground point farther from the nadir. The 
κ result is less accurate, but the reliability improves as the flying height is getting higher. Considering all 
the uncertainties above, in the case of 1200m flying height the proposed adjustment can provide the ω and 
ϕ boresight angles with about ±0.4 arcminute reliability and κ with about ±0.8 arcminute.  
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Simulation results with a 4K by 4K digital camera 
 
Table 3 contains the assumed standard deviations for a 4K by 4K digital camera. The camera model of the 
4K by 4K digital camera is less stable than the camera model of the traditional film-based camera, the focal 
length and the principal point shifts can change significantly between calibrations (Toth, 1999); therefore, 
the ± 10µm standard deviation for the camera parameters would be too optimistic. Consequently, ± 20µm 
for the focal length and ± 100µm for the principal point shifts were used. Other than that, the same values 
were applied as in the case of the traditional film-based cameras. 
 

Table 3. Assumed random errors at 4K by 4K digital camera 
 

Error source Standard deviation 
Image coordinates ± 5µm 
Focal length ± 20µm 
Principal point ± 100µm 
Perspective center position ± 10cm 
INS attitude ± 10” 

 
Table 4 contains the RMS results of the adjusted boresight misalignment angles in the presence of different 
error sources for the different flying heights. The table contains the results for two locations: ground point 
in the center of the model area and a ground point in Gruber location 6 (as in the previous simulation).  
 

Table 4. RMS of boresight angles at 4K by 4K digital cameras 
 

Error source RMS [deg] Center point RMS [deg] Gruber location 6 
H=400m ωωωω ϕϕϕϕ κκκκ ωωωω ϕϕϕϕ κκκκ 
Image coordinates 0.004 0.004 0.015 0.004 0.006 0.010 
Focal length 0.004 0.004 0.015 0.011 0.008 0.010 
Principal point 0.110 0.104 0.016 0.075 0.069 0.053 

Focal length+princ.point 0.110 0.104 0.016 0.075 0.065 0.050 
Perspective center position 0.011 0.011 0.040 0.014 0.022 0.032 
INS attitude 0.004 0.004 0.016 0.005 0.008 0.013 
Persp.cent.+INS attitude 0.011 0.011 0.040 0.015 0.023 0.034 
All 0.108 0.104 0.042 0.076 0.070 0.060 
H=1200m ωωωω ϕϕϕϕ κκκκ ωωωω ϕϕϕϕ κκκκ 
Image coordinates 0.004 0.004 0.015 0.004 0.006 0.010 
Focal length 0.004 0.004 0.015 0.011 0.008 0.010 
Principal point 0.107 0.102 0.016 0.074 0.065 0.052 
Focal length+princ.point 0.112 0.102 0.016 0.075 0.063 0.051 
Perspective center position 0.005 0.005 0.020 0.006 0.009 0.014 
INS attitude 0.004 0.004 0.017 0.005 0.009 0.013 
Persp.cent.+INS attitude 0.005 0.005 0.020 0.007 0.011 0.017 
All 0.108 0.104 0.022 0.075 0.067 0.053 
H=3000m ωωωω ϕϕϕϕ κκκκ ωωωω ϕϕϕϕ κκκκ 
Image coordinates 0.004 0.004 0.014 0.004 0.007 0.010 
Focal length 0.004 0.004 0.014 0.010 0.008 0.010 
Principal point 0.114 0.102 0.016 0.074 0.065 0.053 
Focal length+princ.point 0.112 0.103 0.016 0.074 0.065 0.052 
Perspective center position 0.004 0.004 0.015 0.005 0.007 0.011 
INS attitude 0.004 0.004 0.017 0.005 0.008 0.012 
Persp.cent.+INS attitude 0.005 0.004 0.017 0.006 0.009 0.013 
All 0.110 0.101 0.018 0.074 0.063 0.051 
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The principal point shift uncertainty affects mainly the ω, ϕ angles, but does not have significant effect on 
the κ angle for the ground point near the center. If the ground point is farther from the nadir point, the 
principal point shift uncertainty has significant effect on κ, too, but the reliability of the other two angles 
are better than in the case of center point. If all the uncertainties are considered, ω and ϕ angles are more 
reliable if the ground point is farther away from the center, while κ result is much more reliable if the 
ground point is near the center. The large uncertainty in the ω and ϕ results is due to the increased 
uncertainty in the principal point shifts. At 1200m flying height, the reliability of ω and ϕ is about ±4-6 
arcminute, depending on the position of the ground point. The κ result is more reliable; about ±1.2 
arcminute if the ground point near the center of the model area was used. Higher flying height improves all 
components, especially the κ result. To decide what is more advantageous, using ground points near or 
away from the center, the effect of the different boresight angles on georeferencing accuracy must be 
analyzed. 
 

 
EFFECTS OF DIFFERENT ERRORS ON GEOREFERENCING 

 
The reliability of georeferencing is analyzed only for the 4K by 4K digital camera using the boresight 
results of the proposed adjustment. To show how the different error sources could affect the calculated 
ground coordinates, first the effect of uncertainty in exterior orientation, the uncertainty in the camera 
model, and the uncertainty of the determined boresight misalignment angles are analyzed, separately and 
combined. RMSs at the 6 Gruber locations are calculated but only representative data are included in the 
tables (for convenience, the coordinate system was oriented with X-axis in the base direction and Y-axis 
perpendicular to that). The simulations were carried out at different flying heights to analyze flying height 
dependency; here only simulation results for 1000 m flying height are shown.  
 
Effect of uncertainty in exterior orientation (navigation solution) 
 
Table 5 illustrates the RMS values of the calculated X, Y, Z coordinates of the ground points at different 
standard deviations of the perspective center coordinates and attitude angles; Figure 1 shows a visualization 
of this dataset. Uncertainty of the attitude angles has significant effect on the calculated horizontal and 
vertical coordinates. The vertical coordinates are affected the most significantly, which can be easily 
understood considering that two rays with distorted directions do not intersect. The errors in the Y 
coordinates depend on the position of the point; Gruber points not in nadir locations are affected 
approximately three times more than points in nadir location. The effect of attitude errors is even bigger at 
higher flying heights. The errors in the calculated coordinates caused by errors in the perspective center 
coordinates are not amplified by the flying. 
 

Table 5. Effect of exterior orientation errors on georeferencing 
 

σσσσ: Xo,Yo,Zo 
[cm] 

σσσσ:ωωωωϕϕϕϕκκκκ 
[“] 

RMS X 
[m] 

RMS Y1 
[m] 

RMS Y3 
[m] 

RMS Z 
[m] 

0 0.12 0.18 0.07 0.28 
5 0.13 0.19 0.07 0.30 
10 0.14 0.21 0.08 0.33 
20 0.19 0.30 0.10 0.46 
30 0.25 0.39 0.13 0.62 
45 0.33 0.55 0.18 0.87 

0 

60 0.43 0.70 0.23 1.13 
0 0.14 0.20 0.08 0.32 
5 0.14 0.22 0.08 0.34 
10 0.15 0.24 0.09 0.37 
20 0.20 0.32 0.11 0.49 
30 0.26 0.41 0.14 0.67 
45 0.34 0.55 0.18 0.89 

5 

60 0.44 0.72 0.24 1.16 
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0 0.17 0.26 0.09 0.41 
5 0.18 0.28 0.10 0.43 
10 0.18 0.29 0.11 0.46 
20 0.22 0.36 0.12 0.58 
30 0.27 0.44 0.15 0.70 
45 0.36 0.59 0.20 0.95 

10 

60 0.45 0.72 0.24 1.17 
0 0.27 0.41 0.15 0.65 
5 0.28 0.43 0.16 0.69 
10 0.29 0.44 0.16 0.68 
20 0.32 0.50 0.18 0.79 
30 0.35 0.55 0.19 0.89 
45 0.41 0.68 0.23 1.08 

20 

60 0.49 0.80 0.28 1.26 
0 0.38 0.61 0.21 0.96 
5 0.38 0.60 0.22 0.98 
10 0.40 0.63 0.22 0.99 
20 0.42 0.67 0.22 1.05 
30 0.43 0.70 0.24 1.12 
45 0.50 0.81 0.28 1.29 

30 

60 0.55 0.92 0.31 1.45 
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Figure 1. Effect of exterior orientation errors for RMS X, Y1, Y3 and Z; flying height is H=1000m. 

 
Effect of uncertainty in interior orientation (camera model) 
 
Table 6 illustrates the RMS of ground positioning at different standard deviations of the focal length and 
the principal point shifts; visualized results shown in Figure 2. Any uncertainty in the principal point shift 
affects the X and Y coordinates of the calculated ground points. In other words, the principal point shift 
error propagates to X, Y ground coordinate error according to the scale. Any uncertainty in the focal length 
affects the vertical coordinates of the calculated ground points according to the scale and it has not much 
effect on the horizontal coordinates.  

76



Table 6. Effect of errors in camera model 
 

σσσσ: c 
[µµµµm] 

σσσσ: x0,y0 
[µµµµm] 

RMS X 
[m] 

RMS Y 
[m] 

RMS Z 
[m] 

0 0.12 0.18 0.29 
10 0.23 0.28 0.28 
20 0.42 0.44 0.27 
50 0.98 1.01 0.29 
100 1.97 1.97 0.29 
200 3.87 3.92 0.28 

0 

300 5.80 5.86 0.28 
0 0.12 0.19 0.35 
10 0.23 0.28 0.35 
20 0.42 0.42 0.35 
50 1.00 1.00 0.35 
100 1.97 1.90 0.34 
200 3.83 4.07 0.34 

10 

300 6.05 6.08 0.35 
0 0.12 0.18 0.47 
10 0.26 0.27 0.48 
20 0.40 0.43 0.47 
50 0.99 0.99 0.49 
100 1.98 1.94 0.49 
200 3.90 3.94 0.48 

20 

300 5.98 5.81 0.49 
0 0.12 0.19 1.00 
10 0.22 0.26 0.99 
20 0.39 0.43 1.01 
50 0.97 0.99 1.01 
100 1.94 1.90 1.06 
200 4.00 4.01 1.04 

50 

300 6.04 5.91 1.04 
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Figure 2. Effect of interior orientation errors for RMS XY (green) and Z (blue); flying height is H=1000m. 
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Effect of uncertainty in boresight misalignment angles 
 
Table 7 illustrates the RMS of ground positioning at different standard deviations of the boresight 
misalignment. The standard deviation values were chosen according to the reliability of the boresight 
results of the proposed adjustment method.  Errors in the ω and ϕ misalignment angles have significant 
effect on all three coordinates of the calculated ground points. If the ground point is farther from the nadir, 
the calculated vertical coordinates are worse. The effect of κ misalignment is much less, and practically 
negligible on the vertical coordinates; therefore, it is better using farther ground points to determine the 
boresight angles since this provides more accurate ω and ϕ misalignment angles.  
 

Table 7. Effect of uncertainty in boresight misalignment 
 

σσσσ: ωωωω,ϕϕϕϕ 
[‘] 

σσσσ: κκκκ 
[‘] 

RMS X 
[m] 

RMS Y 
[m] 

RMS Z1 
[m] 

RMS Z3 
[m] 

0 0.12 0.18 0.28 0.28 
1 0.21 0.20 0.28 0.28 
2 0.36 0.27 0.28 0.28 0 

3 0.52 0.34 0.28 0.28 
0 0.30 0.34 0.37 0.34 
1 0.34 0.35 0.39 0.34 
2 0.45 0.40 0.39 0.34 1 

3 0.58 0.45 0.39 0.34 
0 0.55 0.61 0.59 0.49 
1 0.59 0.64 0.61 0.50 
2 0.65 0.64 0.61 0.48 2 

3 0.78 0.69 0.60 0.49 
0 0.82 0.90 0.84 0.68 
1 0.82 0.89 0.83 0.63 
2 0.87 0.91 0.85 0.65 3 

3 0.95 0.95 0.84 0.66 
0 1.10 1.15 1.11 0.85 
1 1.09 1.15 1.09 0.84 
2 1.13 1.20 1.09 0.85 4 

3 1.19 1.21 1.10 0.84 
0 1.33 1.47 1.33 1.02 
1 1.38 1.46 1.35 1.06 
2 1.41 1.51 1.37 1.06 5 

3 1.47 1.47 1.35 1.05 
0 1.63 1.80 1.63 1.25 
1 1.64 1.76 1.61 1.24 
2 1.60 1.79 1.59 1.21 6 

3 1.72 1.81 1.62 1.24 
0 1.92 2.07 1.90 1.45 
1 1.92 2.13 1.91 1.44 
2 1.93 2.03 1.87 1.43 7 

3 1.99 2.10 1.87 1.47 
 
Reliability of ground positioning using boresight misalignment angles from proposed method 
 
After studying the effect of different errors on georeferencing accuracy, this section analyzes the reliability 
of the calculated ground coordinates that can be achieved using the boresight results from the proposed 
method (when all kinds of error sources are present); only the 4K by 4K digital camera case is considered. 
Table 8 contains the RMS values of the calculated ground coordinates in the case of 400m and 1200 m 
flying heights. These values are calculated by simulation considering the standard deviations of the camera 
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and other parameters described in Table 3 and the RMS values of the boresight results described in the 
previous section. Table 8 contains two different RMS Z values since the calculated vertical coordinates are 
more accurate at nadir locations. 
 

Table 8. 
 

H 
[m] 

RMS X 
[m] 

RMS Y 
[m] 

RMS Z1 
[m] 

RMS Z3 
[m] 

400 0.97 0.97 0.61 0.52 
1200 2.82 2.82 1.57 1.29 

 
The above results refer to the case when the camera and other parameters are independent of the boresight 
angles. Assuming the camera parameters did not change during a flight, the above georeferencing accuracy 
is too pessimistic because of the correlation between the errors in the camera model, the INS orientation, 
the perspective center coordinates and the resulted boresight misalignment angles. Therefore, Table 9 
shows the RMS values of the calculated ground coordinates if the ground coordinates were calculated from 
the same image pair as the boresight angles were determined from. For this situation, the following biases 
were assumed: 
- +100µm principal point shift bias 
- +20 µm focal length bias 
- +10cm perspective center position error 
- +10” INS attitude error 
Since the resulted boresight misalignment angles try to compensate for all errors, the accuracy of the 
calculated ground coordinates is better than the values in Table 8; a few decimeters in the case of 400m 
flying height. Since the effect of the uncertainty of the perspective center coordinates and the INS attitude 
on the resulted boresight angles is not significant compared to the effect of errors in the camera model, 
assuming that the camera parameters did not change during the flight, practically the same georeferencing 
accuracy can be achieved using other image pairs from the same flight. 
 

Table 9. 
 

H 
[m] 

RMS X 
[m] 

RMS Y 
[m] 

RMS Z 
[m] 

400 0.36 0.30 0.48 
1200 1.10 0.79 1.30 

 
 

CONCLUSIONS 
 
If direct orientation is used to determine the exterior orientation, the spatial relationship between the 
different sensors has to be known since the orientation sensors and the imaging sensor are geometrically 
separated. The usual way to determine the boresight misalignment is aerial triangulation. This paper 
discussed the feasibility of determining the boresight misalignment without AT, assuming the availability 
of at least two overlapping images and one known ground point measured in both images.  The motivation 
for this study was to introduce a method that can provide solution in situations when proper boresight 
calibration with an AT process is not possible; there was no block flown to perform a regular AT procedure 
and the sensor mounting has been changed since the last boresight calibration. Since the results of this 
simple adjustment are affected by other error sources, the accuracy of the determined boresight angles have 
been analyzed in the presence of different random errors. Simulations were carried out with traditional 
aerial cameras as well as 4K by 4K digital cameras. The focus was on the latter camera type due to its 
geometric instability. Analyzing the georeferencing performance using the resulted boresight angles, a few 
decimeters georeferencing accuracy has been achieved provided the computation was based on images 
from the same flight. The accuracy of the determined angles was a few arcminutes. These results indicate 
that the adjusted boresight angles compensate to a certain extent for possible errors such as sensor model 
anomalies. 
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ABSTRACT 
 
In the last few years, LIDAR technology has become a leading tool for obtaining surface models and to 
some extent for extracting various objects. One of the main tasks related to the data processing is the 
segmentation of the surface given by the preprocessed LIDAR points. Several methods have already been 
developed to classify the point cloud. The basic concept is to examine the spatial behavior of the LIDAR 
points; primarily, the point distribution and the number of return signals are used for classification. 
Depending on what the laser beam was reflected from, there might be signature information available for 
the LIDAR points, which can be further used for classification. 
 
In this paper a concept for building detection based on mathematical morphology is introduced and its 
performance with respect to commercially available LIDAR data classification software is presented. The 
density of the LIDAR data used for testing was low, about 0.1 point/m2. 
 
 

INTRODUCTION 
 
In the last few years LIDAR technology has become a leading tool for obtaining surface and terrain models 
and extracting various objects. Many algorithms have been developed for filtering and automatically 
classifying the LIDAR points. In commonly accepted terminology, filtering is referred to the determination 
of the terrain, while classification is used in broader terms and it includes object extraction.  
 
The raw or unfiltered LIDAR data give the digital surface model (DSM) of the measured area, which is the 
upper envelope of our world that includes LIDAR points reflected from the ground as well as from natural 
and man-made objects. The ultimate challenge is to remove from the point cloud those points that do not 
belong to the ground. Different filtering methods to determine the terrain have been developed over the 
years. At the Institute of Photogrammetry and Remote Sensing at Vienna University of Technology a 
method based on iterative linear prediction was developed for the generation of terrain model in wooded 
and hilly areas (Kraus and Pfeifer, 1998). This method was later extended for more complex, densely built-
up areas using a hierarchical, coarse-to-fine approach (Pfeifer at al., 2001); its implementation is 
commercially available in the software package SCOP++.  Another technique by (Axelsson, 1999; 
Axelsson, 2000) is based on a TIN densification and was developed at the Department of Geodesy and 
Photogrammetry at the Royal Institute of Technology, Stockholm. The commercially available software 
package, TerraScan, has been built around this method. Another scheme based on mathematical 
morphology was presented in (Vosselman, 2000) and (Vosselman and Maas, 2001). A recent technique 
suited to rather dense data sets was introduced by (Elmqvist, 2002) and uses an active shape model for 
terrain estimation. 
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In addition the terrain model generation, when points are classified as either terrain or off-terrain points, 
automatically extracting and reconstructing objects from the point cloud have become a main research topic 
in the LIDAR data processing field. Several methods have been published related to building extraction and 
reconstruction, see (Brunn and Weidner, 1997; Hug and Wehr, 1997; Axelsson, 1999; Maas and 
Vosselman, 1999; Vosselman and Dijkman, 2001; Rottensteiner and Briese, 2002; Elaksher, 2002), and for 
forest feature extraction, see (Nilsson, 1996; Nässet, 1997; Törmä, 2000; Hyyppä  at al., 2001; Pyysalo and 
Hyyppä, 2002; Schardt at al., 2002). 
 
As most of the techniques are specific or customized to certain data types, it is important to understand the 
performance limitation of the different methods. In other words, for a given dataset what classification 
strategy will work well? The sensitivity of the methods is usually measured in point density and in the 
complexity of the area such as the terrain and the objects. Obviously, there is no perfect automatic 
classification method but with the algorithmic improvements the number of misclassifications can be 
reduced.  
 
Recent technological advancements in LIDAR technology have resulted in better data quality and richer 
information content, consequently improving classification performance. The most important changes are 
the increased point density coupled with better point distribution, the availability of multiple return signals, 
and the intensity data or complete waveforms.  
 
Our primary motivation to classify LIDAR points was to find adequate support for automated LIDAR 
sensor calibration. The task was to find an appropriate segmentation of the LIDAR point cloud over an 
overlapping area, which was usually flown in different directions. The objective of the segmentation was to 
find suitable regions for matching in order to determine discrepancies between the different strips. Ideal 
regions do not contain vegetation, buildings and cars, and they are not too flat (have some undulations). A 
possible approach to solve this complex task is to first mask areas with vegetation and buildings to avoid 
these regions and then to select areas, which exhibit the suitable surface pattern. To accomplish this 
objective, a method based on the principal of mathematical morphology has been developed. 
 
 

SELECTED FILTERING METHODS 
 
In this section, a short review will be given of the methods that have been considered for solving the 
segmentation task described above. Our objective was to start from assessing the feasibility of the various 
techniques and then based on performance tests select the optimal one for either directly using it or to 
develop an incremental method. 
 
Robust interpolation, introduced by (Kraus and Pfeifer, 1998) initially approximates the surface calculated 
from all points by using the same weight. This is a coarse estimation of the surface running between terrain 
and off-terrain points. Next, height differences between the LIDAR points and the interpolated surface are 
calculated. Ground points will typically get either large negative or small residuals since the surface 
approximation is running above or close to the terrain. In the next step, all points will be weighted 
depending on their residuals using a special weight function to give new weights to each point. Points with 
large negative discrepancies will get large weights (assumed terrain points) while points with medium 
discrepancies will get smaller weights. Zero weight ignores points with discrepancies more than a user-
specified value. A new surface is computed from all points using the new weights. The interpolation and 
weight calculation is repeated; in each step a better estimation of the terrain will be created. The final 
interpolated surface provides the DTM of the area that is calculated from only the selected terrain points. In 
this manner points are classified as either terrain or off-terrain points. This method works well on wooded 
areas where terrain points, points reflected from the ground, are frequently available. To handle densely 
built-up areas (large areas without true ground points) the original algorithm has been extended by a 
hierarchical, coarse-to-fine method, see (Pfeifer at al., 2001). 
 
The technique developed by (Axelsson, 1999; Axelsson, 2000) uses a hierarchical algorithm, which is based 
on a TIN-representation. A grid with a user-defined size is laid over the dataset and in each pixel of this 
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mesh the lowest vertical point is selected. In the next step, an initial TIN is created from the selected points 
as the first approximation of the ground surface. Adding the LIDAR points to the triangulation leads to the 
final solution. Points are selected one by one; a point may be accepted or rejected as a new terrain point 
based on certain criteria by user-specified parameters such as iteration distance (the distance between the 
candidate point and the present surface) and iteration angle (the angle between the surfaces with and 
without the candidate point). Accepted points are inserted into the triangulation and with every new point 
the TIN surface is modified (altered) and consequently converging closer to the real terrain. In the initial 
point selection the grid size is determined with the maximum building size parameter. The size of a pixel 
will be equal to the maximum building size. For instance, if the maximum building size is 50 m, the 
application can assume that any 50m by 50m area will have at least one hit on the ground and the lowest 
point in the pixel will be selected as a terrain point; for additional details, see (TerraScan). 
 
Mathematical morphology is widely used in image processing. It works as a convolution filter - applying the 
same processing to each element. A new value is given to the pixel on which the kernel is centered; during 
erosion this is the minimum value inside the window while the maximum value is used in the case of 
dilation. This method easily can be applied to the LIDAR data. The moving window (kernel) is centered on 
each point. The elevation of the examined point is replaced with the minimum or maximum elevation inside 
the window. The opening (dilation after erosion) is typically used for LIDAR data terrain extraction; see 
(Vosselman, 2000). For each window after opening, the point with the lowest elevation and all other points 
that are higher than that point but smaller than a predefined value are selected as terrain point.  Since there 
is no optimal window size (Kilian at al., 1996), different sizes of the moving window are used. As the 
window size increases the height tolerance increases to follow the changes in terrain slope. The tolerance 
has to be smaller than the minimum building height to avoid classifying building roofs as terrain. 
 
 

A MORPHOLOGY-BASED METHOD 
 
To support the segmentation of the automated LIDAR sensor calibration process, a morphology-based 
method has been developed. The main goal is to eliminate points that do not belong to the terrain without 
classifying them. Thus, the presented method intends to mask areas of buildings, vegetation, and has no 
special interest in identifying/reconstructing features. In the computations, the original irregularly 
distributed LIDAR points are used; the data are not interpolated to a regular grid (e.g. as in (Oude Elberink 
and Maas, 2000)). 

Figure 1. Breaklines extracted from Hagerstown, MD test area. 
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The spatial behavior of the LIDAR points is analyzed through a moving window-based algorithm. A 
window is moved over the entire dataset and in each window basic statistical parameters are calculated; 
such as standard deviation, maximum gradient among points, and the difference between the maximum and 
minimum elevations. In the next step, various extraction routines are executed; such as the detection of 
areas with given height jumps, i.e. the difference between the maximum and minimum elevations in a 
window is higher than a given value. In this manner breaklines (including natural breaklines) edges of 
buildings and local height variations can be selected from the point cloud. Figure 1 shows generic surface 
breaklines defined by 4 m height variation from the Hagerstown, MD dataset. 
 
The choice of the window size depends on the data density and the purpose of the analysis. Obviously, there 
is no optimal window size in general. For instance, the window size must contain at least 8-9 points in order 
to detect generic breakline locations; for the distribution of the gradients, a larger window (including many 
more points) is needed. Another important parameter is overlap between the windows as they move. One 
extreme is when the moving window is centered on each point; the other one is if there is no overlap. A half 
of the window size is usually a good compromise between execution time and performance. 
 
Removing vegetation  
 
The distinctive spatial distribution of the LIDAR point cloud over vegetated areas is due to the capability of 
the laser pulse to penetrate the forest canopy through gaps. Pulses can be reflected back from many parts of 
the surface (from the ground as well as from different parts of the trees) and several returns can be recorded 
from the very same laser pulse. Differences in height variations range from zero to the canopy height over 
vegetated, especially forested areas. In our algorithm those areas where the variations of the surface 
gradients are above a predefined threshold are flagged as vegetated regions. This is similar to the procedure 
by (Rottensteiner and Biese, 2002), where regions with trees are also eliminated by the analysis of the 
second derivatives of the DSM. 
 

 
Figure 2. Morphological opening on vegetation and building profiles: original dataset (upper pair), erosion 

(mid pair) and dilation applied after erosion (lower pair). 
 
A second technique selected for filtering out vegetation is based on a morphological filtering (opening); see 
Figure 2. This method has certain advantages such as an easy way to eliminate single trees. Choice of the 
window size is more crucial than in the statistical method above. To safely remove vegetation, at least one 
hit from the ground must exist in each window in vegetated areas. Simple opening will not filter out 
buildings, which are bigger than the window size, but the roofs of these buildings may be distorted. To 
avoid this distortion, few modifications have been introduced. During the erosion, the elevation of the 
examined point is replaced with the minimum elevation inside the window if the difference is more than a 
predefined threshold (a practical value is 2 m). Similarly, during the dilation the elevation of the examined 
point is replaced with the maximum elevation inside the window if the difference is more than the same 
predefined threshold. Furthermore, if the difference is more than a certain value (minimum building height), 
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the elevation of the examined point won’t be replaced with the maximum value, but with the original 
elevation of the point. The weakness of the min/max method is that any objects that are smaller than the 
minimum building size will be filtered out as well. The modified dataset, optimistically without vegetation 
points, is adequate for detecting buildings independently whether the roofs of the buildings have changed or 
not. 
 
Combining the outcome of the two independent processing techniques will result in an improved 
performance as the two techniques compensate for each other’s weaknesses. For example, local variations 
are easily eliminated by the second method, but it fails if the vegetation is too dense and there is no terrain 
point inside the window. In contrast, the first method will detect such variations from the canopy. 
 
Detecting buildings 
 
Most building detection techniques start after the terrain model computation is complete and then a height 
threshold is applied to the difference between the DTM and DSM (Weidner, 1997; Rottensteiner and Biese, 
2002). In our case, however, the availability of DTM is no prerequisite for the building extraction as it starts 
from the reduced data set; opening eliminates the vegetated points but preserves buildings as shown in 
Figure 3 for a moderately vegetated area with small buildings. In the following, this reduced data will be 
considered as original dataset (Figure 3b). 
 

a) b) 
Figure 3. Extracted generic breaklines (left) and after opening has been applied (right). 

 
To detect building edges, the calculation begins with finding predefined height jumps, i.e., in each window 
the difference between the maximum and minimum elevations is computed. The processing window is 
moved over the data set with half of the window size in both directions. The minimum predefined height 
jump (Hmin-jump) is set to the minimum building height (H); typically this is set to 4 m. Storing these 
computation results, an initial indicator matrix is formed and is the basis of the subsequent analysis. Each 
pixel in this matrix represents a window and contains the value associated with that window. Windows with 
the Hmin-jumps are labeled with 1 (indicator windows); without the height jumps they are assigned a 0. 
Although supposedly vegetation points have been removed from the data set, besides the building edges 
some other breaklines (due to natural or man-made objects) may also be indicated in this matrix as shown in 
Figure 3b. 
 
Once the breakline detection is complete, the contours of all buildings will be detected. The challenge at 
this point is to identify all the points of each building. In the next step, point-groups are created by a 
calculation, which is based on mathematical morphology (erosion) and is executed for each indicator 
window (i.e. for each pixel in the indicator matrix labeled with 1) individually. The computation starts from 
the indicator pixel and the original dataset is used in this process. In the indicator window, elevations of 
points above the minimum height point with more than H are replaced with the minimum elevation. The 
eight neighborhood pixels of the indicator pixel are marked in order to check the height differences inside 
these windows. Neighboring windows are analyzed in an iterative process. In each step the eight 
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neighborhood pixels of the previously studied pixels, where the Hmin-jump was found, are marked in order 
to also check the height discrepancies inside these windows. The process, illustrated in Figure 4, is iterative 
until neighboring windows with Hmin-jump are found. For the reason that windows are moved with overlap 
(half of the window size), the subsequent window will always contain points with original and previously 
modified elevations. This is the key for “demolishing” buildings, as shown in Figure 4. The algorithm uses 
the basic idea of mathematical morphology (erosion); in the kernel, the values are changed for the 
minimum. In our approach the principle of the erosion was modified in two aspects. First, the elevation is 
replaced only if the height difference from the minimum is more than H. Second, elevations in the 
subsequent windows are analyzed by considering the previous height modifications.  
 
After the iterative process is finished, the elevations of the modified dataset are subtracted from the 
elevations of the original dataset. The subtraction results in many no difference in heights and some non-
zero heights (selected points). In the case when the indicator window represents an area over building 
edges, points with non-zero height are building points belonging to the same building. Selected points with 
their original heights are stored in a layer of a multi-layer matrix. Each layer is identified by the indicator 
pixel (window) that began the individual iterative calculation. In summary, the execution of the iterative 
computation for all n indicator windows results in n point-groups stored in n layers. 
 

. . .. . .

 
 

 
 

Figure 4. Concept of the iterative building demolition. 
 

Advantages of the “demolishing” method, illustrated in Figure 5, are: 
•  invariant to the size and shape of the building and the type of the roof, 
•  the same point cloud will always be selected no matter where (which part of the building edge) the 

demolishing was started, 
•  coherent points belonging to the same building are always stored in one layer.  

 
The iterative calculations starting from the indicator windows are independent; in each case the computation 
starts from the original (unchanged) data set and the results are stored on different layers. This way, 
buildings will not get demolished due to a natural breakline triggered events. 
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So far the iterative computation for all n indicator windows was executed resulting in n point-groups stored 
in n layers. One can assume that from the n point-groups m point-groups refer to q buildings (0 ≤ m ≤ n; 
m=n: ideal case, indicator matrix indicates only building edges; m=0: no building, and 0 ≤ q < m). A 
building is associated to as many layers as many edge windows belong to the building that were detected 
and marked in the initial indicator matrix.  Furthermore, each layer belonging to the same building contains 
the same point cloud (point-group) due to the algorithm of building “demolishing”.  
 

Figure 5.  Selected building points (lower), the iterative calculation started from the corner (upper). 
 
Using the above-described features, the recognition of building point-groups is accomplished in two phases: 

•  By comparing the different layers, layers that contain the same point cloud are combined into one layer. 
n point-groups become q+p point-clouds; q point-clouds refer to q buildings and p point-clouds refer to 
p others, i.e. m → q and n-m → p. The point-group/point-cloud relationship (k:1 relationship) is 
registered. Each point-group (i.e. layer) is identified by an indicator pixel (which represents an 
indicator window, which is an edge window). In this manner, the relationship between a point-cloud 
and edge-windows belonging to the point-cloud (set1) has been determined. 

•  Since typically building edges as well as other breaklines are flagged in the initial indicator matrix, the 
main question is how we can distinguish between the point-clouds of building edges and the other 
breaklines. In order to solve the problem of selecting the q building point-clouds from the q+p point-
clouds, for each q+p point-clouds the following computation is executed. Edge-windows belonging to a 
point cloud are extracted by dividing the original data set into cloud and off-cloud points. From all the 
windows, edge-windows are selected by choosing windows containing both cloud and off-cloud points 
(set2).   

Comparing set1 and set2, the elements of the two sets will be identical for buildings, but not for other 
breaklines or terrain roughness.  

41 5  m

240 m

41 5  m

240 m

41 5  m

240 m

41 5  m

240 m
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Additional parameters (such as minimum and maximum building size) as well as aspect ratios can be 
defined to avoid gross errors. The introduced method, however, is suitable for the detection of complex 
buildings even with huge sizes. 
 
 

TEST RESULTS - PERFORMANCE ANALYSIS 
 
The test dataset, an area over Hagerstown, MD, was provided by the EarthData Group. The LIDAR point 
density was rather small, about 0.1 point/m2; the data contained multiple returns. The test area, a 2 km by 2 
km square is characterized by flat terrain, with various vegetation and buildings of different sizes and types. 
For comparison purpose, two LIDAR processing packages have been used; although there was no attempt 
to perform complete evaluation.  
 
Using TerraScan, building, vegetation, ground, railway and power line points can be classified interactively 
or using automated processes. The program has shown a good performance in terrain point selection. There 
are three user-defined parameters and it is definitely worth optimizing them, especially changing the default 
value of the maximum building size to avoid serious misclassifications. If the maximum building size is set 
to 50 m, the application assumes that any 50m by 50m area will have at least one hit on the ground, hence 
the lowest point in each 50m by 50m mesh will be selected as terrain point. After setting the proper building 
size parameter, only few misclassifications may occur. The program cannot handle negative outliers; error 
points that are well below the ground level. Therefore, the “low points” utility must be run before the terrain 
determination, which flags points that fall below the average of points within a given distance. 
 
The algorithm of RTV (Rapid Terrain Visualization) LIDAR Toolkit is proprietary. The program is 
implemented as an ArcView extension and is capable of extracting buildings, the bare earth, roads and 
trees. Feature extraction can be supported by intensity data. RTV Lidar Toolkit offers interactive 
classification and automated processes; although in our experiments the automated processing has shown 
modest performance. There seems to be less control by the user-defined parameters. Building-extraction 
produced better results for suburban areas than for dense, built-up urban areas, especially for areas with 
oversize buildings. 
 
The combined building and vegetation performance of the RTV and the proposed morphology-based 
method has been tested for a few datasets. Figure 6 shows results for the Northwest segment of the test area, 
with better filtering results for the morphology-based method. 

Figure 6. Buildings and vegetated areas extracted by RTV and the proposed method. 
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A close-up of the morphology-based method results, shown in Figure 7, covers a mixed area with vegetation 
and small buildings. The details clearly illustrate that all the buildings were properly extracted and there 
was no misclassification for that area. 

Figure 7. Small buildings in a partially vegetated area extracted by the morphology-based method. 
 
 

CONCLUSION 
 
In this paper a concept based on mathematical morphology for building and vegetation removal has been 
introduced. The motivation for this research was to support LIDAR sensor calibration by filtering out all the 
complex man-made and natural objects. The performance of the proposed method has been tested and 
compared to other techniques. Initial results indicate a good performance for jointly removing buildings and 
vegetation. Further research is expected to use LIDAR intensity data and to introduce a robust decision-
making system to support the combined use of various filtering techniques. 
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INTRODUCTION 
 
In the last few years LIDAR technology has become a leading tool for obtaining surface 
and terrain models and extracting various objects. One of the main tasks related to the 
data processing is the segmentation of the surface given by the preprocessed LIDAR 
points. Many algorithms have been developed for filtering and automatically classifying 
the LIDAR points. In commonly accepted terminology, filtering is referred to the 
determination of the terrain, while classification is used in broader terms and it includes 
object extraction.  
 
The raw or unfiltered LIDAR data give the digital surface model (DSM) of the measured 
area, which is the upper envelope of our world that includes LIDAR points reflected from 
the ground as well as from natural and man-made objects. The ultimate challenge is to 
remove from the point cloud those points that do not belong to the ground. Different 
filtering methods to determine the terrain have been developed over the years. At the 
Institute of Photogrammetry and Remote Sensing at Vienna University of Technology a 
method based on iterative linear prediction was developed for the generation of terrain 
model in wooded and hilly areas (Kraus and Pfeifer, 1998). This method was later 
extended for more complex, densely built-up areas using a hierarchical, coarse-to-fine 
approach (Pfeifer at al., 2001); its implementation is commercially available in the 
software package SCOP++.  Another technique by (Axelsson, 1999; Axelsson, 2000) is 
based on a TIN densification and was developed at the Department of Geodesy and 
Photogrammetry at the Royal Institute of Technology, Stockholm. The commercially 
available software package, TerraScan, has been built around this method. Another 
scheme based on mathematical morphology was presented in (Vosselman, 2000) and 
(Vosselman and Maas, 2001). A recent technique suited to rather dense data sets was 
introduced by (Elmqvist, 2002) and uses an active shape model for terrain estimation. 
 
In addition the terrain model generation, when points are classified as either terrain or off-
terrain points, automatically extracting and reconstructing objects from the point cloud 
have become a main research topic in the LIDAR data processing field. Several methods 
have been published related to building extraction and reconstruction, see (Brunn and 
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Weidner, 1997; Hug and Wehr, 1997; Axelsson, 1999; Maas and Vosselman, 1999; 
Vosselman and Dijkman, 2001; Rottensteiner and Briese, 2002; Elaksher, 2002), and for 
forest feature extraction, see (Nilsson, 1996; Nässet, 1997; Törmä, 2000; Hyyppä  at al., 
2001; Pyysalo and Hyyppä, 2002; Schardt at al., 2002). 
 
Primarily, the point distribution and the number of return signals are used for 
classification; the basic concept is to examine the spatial behavior of the LIDAR points. 
As an example for the LIDAR point distribution, see Figure 1 that shows the profile of a 
laser scan line captured over a building and forested area. Figure 2 illustrates the 
occurrence of multiple returns. 
 
Recent technological advancements in LIDAR technology have resulted in better data 
quality and richer information content, consequently improving classification 
performance. The most important changes are the increased point density coupled with 
better point distribution, the availability of multiple return signals, and the intensity data 
or complete waveforms.  

 
Figure 1. First (green), intermediate (blue) and last (red) reflections. Over forested area 

even three-four reflections can be captured from the same emitted laser pulse (since 
pulses can be reflected back from many parts of the surface, from the ground as well as 

from different parts of the trees). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Double return might also occur when the laser beam hits the edge of a building 
and the laser pulse is reflected back from the building roof and the ground. 
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Obviously, there is no perfect automatic classification method but with the algorithmic 
improvements the number of misclassifications can be reduced. As most of the techniques 
are specific or customized to certain data types, it is important to understand the 
performance limitation of the different methods. The sensitivity of the methods is usually 
measured in point density and in the complexity of the area such as the terrain and the 
objects. Benchmarks and quantitative reports of the efficiency and accuracy of automated 
classification routines are generally not published, but it is commonly quoted that most 
automated filtering routines are 80% to 90% effective. Depending on the complexity of 
the area, they will accurately classify 80% to 90% of the ground points. The remaining 
part of the data needs to be classified manually. 
 
 

A SHORT REVIEW OF THE MAIN FILTERING METHODS 
 
At the Institute of Photogrammetry and Remote Sensing at Vienna University of 
Technology a method based on iterative linear prediction was developed for the 
generation of terrain model. This implementation is commercially available in the 
software package SCOP++. Robust interpolation initially approximates the surface 
calculated from all points by using the same weight, as shown in Figure 3a. This is a 
coarse estimation of the surface running between terrain and off-terrain points. Next, 
height differences between the LIDAR points and the interpolated surface are calculated. 
Ground points will typically get either large negative or small residuals since the surface 
approximation is running above or close to the terrain. In the next step, all points will be 
weighted depending on their residuals using a special weight function to give new 
weights to each point, see Figure 3b. Points with large negative discrepancies will get 
large weights (assumed terrain points) while points with medium discrepancies will get 
smaller weights. Zero weight ignores points with discrepancies more than a user-specified 
value. A new surface is computed from all points using the new weights. The 
interpolation and weight calculation is repeated; in each step a better estimation of the 
terrain will be created as shown in Figure 3c. The final interpolated surface provides the 
DTM of the area that is calculated from only the selected terrain points. In this manner 
points are classified as either terrain or off-terrain points. This method works well on 
wooded areas where terrain points, points reflected from the ground, are frequently 
available. To handle densely built-up areas (large areas without true ground points) the 
original algorithm has been extended by a hierarchical, coarse-to-fine method, see (Pfeifer 
at al., 2001). 
 
The technique developed by (Axelsson, 1999; Axelsson, 2000) was implemented in the 
commercially available software, Terrascan. This method uses a hierarchical algorithm, 
which is based on a TIN-representation. A grid with a user-defined size is laid over the 
dataset and in each pixel of this mesh the lowest vertical point is selected. In the next 
step, an initial TIN is created from the selected points as the first approximation of the 
ground surface. Adding the LIDAR points to the triangulation leads to the final solution. 
Points are selected one by one; a point may be accepted or rejected as a new terrain point 
based on certain criteria by user-specified parameters such as iteration distance (the 
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distance between the candidate point and the present surface) and iteration angle (the 
angle between the surfaces with and without the candidate point). Accepted points are 
inserted into the triangulation and with every new point the TIN surface is modified 
(altered) and consequently converging closer to the real terrain. In the initial point 
selection the grid size is determined with the maximum building size parameter. The size 
of a pixel will be equal to the maximum building size. For instance, if the maximum 
building size is 50 m, the application can assume that any 50m by 50m area will have at 
least one hit on the ground and the lowest point in the pixel will be selected as a terrain 
point; for additional details, see (TerraScan). 
 
 

 
 
 
 
 
 
 
 
 

a) 
 
 
 
 
 
 
 
 

b) 
 
 
 
 
 
 
 
 

c) 
 

Figure 3. Step 1: Interpolation with unit weights (upper), step 2: weighting of 
measurements with an asymmetric weight function (middle), step 3: interpolation with 

new weights, iterative estimation (bottom). 
 
Mathematical morphology is widely used in image processing. It works as a convolution 
filter - applying the same processing to each element. A new value is given to the pixel on 
which the kernel is centered; during erosion this is the minimum value inside the window 
while the maximum value is used in the case of dilation. This method easily can be 
applied to the LIDAR data. The moving window (kernel) is centered on each point, as 
shown in Figure 4. The elevation of the examined point is replaced with the minimum or 
maximum elevation inside the window. The opening (dilation after erosion) is typically 
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used for LIDAR data terrain extraction. For each window after opening, the point with the 
lowest elevation and all other points that are higher than that point but smaller than a 
predefined value are selected as terrain point.  Since there is no optimal window size, 
different sizes of the moving window are used. As the window size increases the height 
tolerance increases to follow the changes in terrain slope. The tolerance has to be smaller 
than the minimum building height to avoid classifying building roofs as terrain. 

 
Figure 4.  The moving window is centered on each point. The figure shows three cases. 
The elevation of the examined point (white) is replaced with the minimum (erosion) or 

maximum elevation (dilation) inside the window. 
 
 

A MORPHOLOGY-BASED METHOD – OUR DEVELOPMENT 
 
A morphology-based method has been developed. The presented method intends to mask 
areas of buildings, vegetation, and has no special interest in identifying/reconstructing 
features. In the computations, the original irregularly distributed LIDAR points are used; 
the data are not interpolated to a regular grid. 
 

 
Figure 5. Breaklines extracted from Hagerstown, MD test area. 
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The spatial behavior of the LIDAR points is analyzed through a moving window-based 
algorithm. A window is moved over the entire dataset and in each window basic 
statistical parameters are calculated; such as standard deviation, maximum gradient 
among points, and the difference between the maximum and minimum elevations. In the 
next step, various extraction routines are executed; such as the detection of areas with 
given height jumps, i.e. the difference between the maximum and minimum elevations in 
a window is higher than a given value. In this manner breaklines (including natural 
breaklines) edges of buildings and local height variations can be selected from the point 
cloud. Figure 5 shows generic surface breaklines defined by 4 m height variation from the 
Hagerstown, MD dataset. 
 
The choice of the window size depends on the data density and the purpose of the 
analysis. Obviously, there is no optimal window size in general. For instance, the window 
size must contain at least 8-9 points in order to detect generic breakline locations; for the 
distribution of the gradients, a larger window (including many more points) is needed. 
Another important parameter is overlap between the windows as they move. One extreme 
is when the moving window is centered on each point; the other one is if there is no 
overlap. A half of the window size is usually a good compromise between execution time 
and performance. 
 
Removing vegetation  
 
The distinctive spatial distribution of the LIDAR point cloud over vegetated areas is due 
to the capability of the laser pulse to penetrate the forest canopy through gaps. Pulses can 
be reflected back from many parts of the surface (from the ground as well as from 
different parts of the trees) and several returns can be recorded from the very same laser 
pulse. Differences in height variations range from zero to the canopy height over 
vegetated, especially forested areas. In our algorithm those areas where the variations of 
the surface gradients are above a predefined threshold are flagged as vegetated regions. 
This is similar to the procedure by (Rottensteiner and Biese, 2002), where regions with 
trees are also eliminated by the analysis of the second derivatives of the DSM. 
 
A second technique selected for filtering out vegetation is based on a morphological 
filtering (opening); see Figure 6. This method has certain advantages such as an easy way 
to eliminate single trees. Choice of the window size is more crucial than in the statistical 
method above. To safely remove vegetation, at least one hit from the ground must exist in 
each window in vegetated areas. Simple opening will not filter out buildings, which are 
bigger than the window size, but the roofs of these buildings may be distorted. To avoid 
this distortion, few modifications have been introduced. During the erosion, the elevation 
of the examined point is replaced with the minimum elevation inside the window if the 
difference is more than a predefined threshold (a practical value is 2 m). Similarly, during 
the dilation the elevation of the examined point is replaced with the maximum elevation 
inside the window if the difference is more than the same predefined threshold.  
Furthermore, if the difference is more than a certain value (minimum building height), the 
elevation of the examined point won’t be replaced with the maximum value, but with the 
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original elevation of the point. The weakness of the min/max method is that any objects 
that are smaller than the minimum building size will be filtered out as well. The modified 
dataset, optimistically without vegetation points, is adequate for detecting buildings 
independently whether the roofs of the buildings have changed or not. 
 

 
Figure 6. Morphological opening on vegetation and building profiles: original dataset 

(upper pair), erosion (mid pair) and dilation applied after erosion (lower pair). 
 
Combining the outcome of the two independent processing techniques will result in an 
improved performance as the two techniques compensate for each other’s weaknesses. 
For example, local variations are easily eliminated by the second method, but it fails if the 
vegetation is too dense and there is no terrain point inside the window. In contrast, the 
first method will detect such variations from the canopy. 
 
Detecting buildings 
 
Most building detection techniques start after the terrain model computation is complete 
and then a height threshold is applied to the difference between the DTM and DSM 
(Weidner, 1997; Rottensteiner and Biese, 2002). In our case, however, the availability of 
DTM is no prerequisite for the building extraction as it starts from the reduced data set; 
opening eliminates the vegetated points but preserves buildings as shown in Figure 7 for a 
moderately vegetated area with small buildings. In the following, this reduced data will 
be considered as original dataset (Figure 3b). 
 
To detect building edges, the calculation begins with finding predefined height jumps, 
i.e., in each window the difference between the maximum and minimum elevations is 
computed. The processing window is moved over the data set with half of the window 
size in both directions. The minimum predefined height jump (Hmin-jump) is set to the 
minimum building height (H); typically this is set to 4 m. Storing these computation 
results, an initial indicator matrix is formed and is the basis of the subsequent analysis. 
Each pixel in this matrix represents a window and contains the value associated with that 
window. Windows with the Hmin-jumps are labeled with 1 (indicator windows); without 
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the height jumps they are assigned a 0. Although supposedly vegetation points have been 
removed from the data set, besides the building edges some other breaklines (due to 
natural or man-made objects) may also be indicated in this matrix as shown in Figure 7b. 
 

   a)      b) 
Figure 7. Extracted generic breaklines (left) and after opening has been applied (right). 

 
Once the breakline detection is complete, the contours of all buildings will be detected. 
The challenge at this point is to identify all the points of each building. In the next step, 
point-groups are created by a calculation, which is based on mathematical morphology 
(erosion) and is executed for each indicator window (i.e. for each pixel in the indicator 
matrix labeled with 1) individually. The computation starts from the indicator pixel and 
the original dataset is used in this process. In the indicator window, elevations of points 
above the minimum height point with more than H are replaced with the minimum 
elevation. The eight neighborhood pixels of the indicator pixel are marked in order to 
check the height differences inside these windows. Neighboring windows are analyzed in 
an iterative process. In each step the eight neighborhood pixels of the previously studied 
pixels, where the Hmin-jump was found, are marked in order to also check the height 
discrepancies inside these windows. The process, illustrated in Figure 8, is iterative until 
neighboring windows with Hmin-jump are found. For the reason that windows are moved 
with overlap (half of the window size), the subsequent window will always contain points 
with original and previously modified elevations. This is the key for “demolishing” 
buildings, as shown in Figure 8. The algorithm uses the basic idea of mathematical 
morphology (erosion); in the kernel, the values are changed for the minimum. In our 
approach the principle of the erosion was modified in two aspects. First, the elevation is 
replaced only if the height difference from the minimum is more than H. Second, 
elevations in the subsequent windows are analyzed by considering the previous height 
modifications.  
 
After the iterative process is finished, the elevations of the modified dataset are subtracted 
from the elevations of the original dataset. The subtraction results in many no difference 
in heights and some non-zero heights (selected points). In the case when the indicator 
window represents an area over building edges, points with non-zero height are building 
points belonging to the same building. Selected points with their original heights are 
stored in a layer of a multi-layer matrix. Each layer is identified by the indicator pixel 
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(window) that began the individual iterative calculation. In summary, the execution of the 
iterative computation for all n indicator windows results in n point-groups stored in n 
layers. 
 

. . .. . .

 
 

 
Figure 8. Concept of the iterative building demolition. 

 
Advantages of the “demolishing” method, illustrated in Figure 9, are: 

• invariant to the size and shape of the building and the type of the roof, 
• the same point cloud will always be selected no matter where (which part of the 

building edge) the demolishing was started, 
• coherent points belonging to the same building are always stored in one layer.  

 
The iterative calculations starting from the indicator windows are independent; in each 
case the computation starts from the original (unchanged) data set and the results are 
stored on different layers. This way, buildings will not get demolished due to a natural 
breakline triggered events. 
 
So far the iterative computation for all n indicator windows was executed resulting in n 
point-groups stored in n layers. One can assume that from the n point-groups m point-
groups refer to q buildings (0 ≤ m ≤ n; m=n: ideal case, indicator matrix indicates only 
building edges; m=0: no building, and 0 ≤ q < m). A building is associated to as many 
layers as many edge windows belong to the building that were detected and marked in the 
initial indicator matrix.  Furthermore, each layer belonging to the same building contains 
the same point cloud (point-group) due to the algorithm of building “demolishing”.  
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Figure 9.  Selected building points (lower), the iterative calculation started from the 
corner (upper). 

 
Using the above-described features, the recognition of building point-groups is 
accomplished in two phases: 

• By comparing the different layers, layers that contain the same point cloud are 
combined into one layer. n point-groups become q+p point-clouds; q point-clouds 
refer to q buildings and p point-clouds refer to p others, i.e. m → q and n-m → p. The 
point-group/point-cloud relationship (k:1 relationship) is registered. Each point-group 
(i.e. layer) is identified by an indicator pixel (which represents an indicator window, 
which is an edge window). In this manner, the relationship between a point-cloud and 
edge-windows belonging to the point-cloud (set1) has been determined. 

• Since typically building edges as well as other breaklines are flagged in the initial 
indicator matrix, the main question is how we can distinguish between the point-
clouds of building edges and the other breaklines. In order to solve the problem of 
selecting the q building point-clouds from the q+p point-clouds, for each q+p point-
clouds the following computation is executed. Edge-windows belonging to a point 
cloud are extracted by dividing the original data set into cloud and off-cloud points. 
From all the windows, edge-windows are selected by choosing windows containing 
both cloud and off-cloud points (set2).   
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Comparing set1 and set2, the elements of the two sets will be identical for buildings, but 
not for other breaklines or terrain roughness.  
 
Additional parameters (such as minimum and maximum building size) as well as aspect 
ratios can be defined to avoid gross errors. The introduced method, however, is suitable 
for the detection of complex buildings even with huge sizes. 
 
The performance of the proposed method has been tested and compared to other 
techniques. Initial results indicate a good performance for jointly removing buildings and 
vegetation. Further research is expected to use LIDAR intensity data and to introduce a 
robust decision-making system to support the combined use of various filtering 
techniques. 
 

TEST RESULTS - PERFORMANCE ANALYSIS 
 
The test dataset, an area over Hagerstown, MD, was provided by the EarthData Group. 
The LIDAR point density was rather small, about 0.1 point/m2; the data contained 
multiple returns. The test area, a 2 km by 2 km square is characterized by flat terrain, with 
various vegetation and buildings of different sizes and types. For comparison purpose, 
two LIDAR processing packages have been used; although there was no attempt to 
perform complete evaluation.  
 
Using TerraScan, building, vegetation, ground, railway and power line points can be 
classified interactively or using automated processes. The program has shown a good 
performance in terrain point selection. Figure 10 shows the evaluated point cloud on the 
test area; the white and blue points indicate the terrain and non-terrain points, 
respectively. There are three user-defined parameters and it is definitely worth optimizing 
them, especially changing the default value of the maximum building size to avoid 
serious misclassifications. If the maximum building size is set to 50 m, the application 
assumes that any 50m by 50m area will have at least one hit on the ground; hence the 
lowest point in each 50m by 50m mesh will be selected as terrain point. Figure 11 
illustrates the effect of the parameter choice on the filtering results. After setting the 
proper building size parameter, only few misclassifications may occur. As Figure 10 
shows, the program cannot handle negative outliers; error points that are well below the 
ground level. Therefore, the “low points” utility must be run before the terrain 
determination, which flags points that fall below the average of points within a given 
distance. 
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Figure 10. Terrain (white) and non-terrain (blue) points extracted by TerraScan. The red 

circle shows a misclassified area due to negative outlier (lower figure). 
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Figure 11. Effect of parameter choice on the filtering results. The maximum building size 

was set to 300m (upper) and 60m (lower). 
 
The algorithm of RTV (Rapid Terrain Visualization) LIDAR Toolkit is proprietary. The 
program is implemented as an ArcView extension and is capable of extracting buildings, 
the bare earth, roads and trees. Feature extraction can be supported by intensity data. RTV 
Lidar Toolkit offers interactive classification and automated processes; although in our 
experiments the automated processing has shown modest performance. There seems to be 
less control by the user-defined parameters. Building-extraction produced better results 
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for suburban areas than for dense, built-up urban areas, especially for areas with oversize 
buildings. 
 
The combined building and vegetation performance of the RTV and the proposed 
morphology-based method has been tested for a few datasets. Figure 12 shows results for 
the Northwest segment of the test area, with better filtering results for the morphology-
based method. 

 
Figure 12. Buildings and vegetated areas extracted by RTV and the proposed method. 

 
A close-up of the morphology-based method results, shown in Figure 13, covers a mixed 
area with vegetation and small buildings. The details clearly illustrate that all the 
buildings were properly extracted and there was no misclassification for that area. 

Figure 13. Small buildings in a partially vegetated area extracted by the morphology-
based method. 
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RTV Lidar Toolkit requires the interpolation of the original data to a regular grid before process. Figure 14 
and Figure 15 show how the results of the classification depend on the parameter choice. 

a) b) c) 
 

d) e) f) 
Figure 14. Digital Surface Model of the test area (a). Digital Terrain Models generated by RTV from the 
interpolated grid; grid size was set to 0.1m (b) , 0.5m (c), 1m (d), 1.5m (d) and 3m (e). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a) b) 
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c) d) 
Figure 15. Building outlines extracted by RTV in the cases the grid size was set to 0.5m 

(a), 3m (b), 1m (c) and 1.5m (d). 
 
 

CLASSIFICATION USING INTENSITY DATA  
 
In this report the major aspects of LIDAR data classification, based exclusively on 
LIDAR point cloud location information were delineated throughout the review of the 
current methods and a concept based on mathematical morphology for building and 
vegetation removal has been introduced. The performance of the proposed method has 
been tested and compared to other techniques. 
 
Most laser sensors nowadays, however, provide intensity data that reflect the material 
characteristics of objects. Therefore intensity data can be useful for LIDAR data 
classification. However, their possible use is still under investigation. Since the intensity 
values of the laser are affected by different factors (elevation, density, reflection angle, 
composition of the materials), intensity data could be very noisy. Intensity may be 
distorted by these effects; it might even give false results of what the beam actually hit. 
 
Different materials have specific reflectance values. In general, the value of reflectivity 
can be grouped as it follows. High reflectivity: light surfaces, grass, trees, water (wavy 
conditions); low reflectivity: dark surfaces, asphalt, coal, iron oxide, wet surfaces, mud, 
water. 
 
Consequently, the major problems need to be solved are the removal of noise while 
preserving the original information and the proper separability between the different 
classes. Figure 16 shows the height and intensity images of the same area. Asphalt road 
can be identified very well in the intensity image, but not in the height image. Since 

106



asphalt is often used as roofing materials, building roof has similar intensity to asphalt 
road. Vegetated areas and buildings are well separable in the intensity image. The 
contours of buildings are sharper in the height image. Figure 16 shows height and 
intensity data acquired by Optech Fall, 2002. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 

Figure 16. Height vs. intensity data 
 

 
 

Outlier removal 
 
Upper and lower elevation limits for valid measurements are determined from the plot of 
the data by latitude and elevation, see Figure 17. All the points outside the defined 
elevation range are eliminated from the point cloud. For more precise filtering, the mean 
and standard deviation of elevations of points within a fixed radius is computed. If the 
elevation of a point differs from the mean with more than 3 standard deviations and 
greater than a defined distance, the point is discarded. 
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Figure 17. Removal of outliers 
 
 
 

ROAD DETECTION 
 

Road surface measurements are of main interest to ODOT OAE operation and therefore 
tests have been carried out on the Optech and LHS dataset to gain an initial understanding 
of the process and the performance of the existing tools. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18. DSM (left) and DTM (right) generated by RTV (road 1) 
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Figure 18 shows how objects, including vehicles on the road are extracted. Note the 
remaining footprint of the vehicles. The same area processed by TerraScan is shown in 
Figure 19, indicating a reasonably good rate of properly detecting the vehicles. The 
number points not considered ground, however, is not ignorable and suggests that further 
processing is required to clean the road areas. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19. Selected ground points (red) by TeraaScan (road 1) 
 
 

A similar dataset obtained by using the LHS test data are shown in Figures 20-21. The 
general observation are comparable to the Optech dataset 
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Figure 20. DSM (upper) and DTM (lower) generated by RTV (road 2) 
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Figure 21. Selected ground points (red) by TeraaScan (road 2) 
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Abstract. The deployment of LIDAR systems has 
recently experienced enormous growth.  Improved 
performance and affordability have made LIDAR a 
primary tool for collecting a variety of high quality 
surface data in much shorter periods of time than 
previously possible.  In addition, some features 
unique to LIDAR, such as the capability to separate 
vegetation from the ground, have opened up new 
application areas.  To achieve the highest accuracy, 
however, LIDAR systems have to be rigorously 
calibrated and the calibration parameters must be 
frequently checked.   

LIDAR systems are complex multi-sensory 
systems composed of high-precision navigation and 
various imaging sensors. Therefore, the calibration 
process includes the calibration of the individual 
sensors and then the calibration of the integrated 
multi-sensory systems. High-performance 
integrated GPS/INS navigation systems provide the 
platform orientation for LIDAR systems and 
consequently, the geo-referencing accuracy 
achieved by the navigation component determines 
the ultimate performance limit of the whole data 
acquisition system. Despite the widespread use of 
GPS and the growing use of INS, maintaining a 
precise solution under various conditions is still a 
formidable task. The connection between the 
navigation system and the LIDAR scanner is 
described by the mounting bias or boresight. To 
determine and maintain the model parameters of 
this sensor relationship, well-planned experiments 
should be performed. Because of the nature of the 
LIDAR data, there is no direct solution for 
determining the boresight parameters. In this paper, 
we propose a method, using raw LIDAR data from 
overlapping flight lines, including both navigation 
and range components, to determine the boresight 
parameters. 

 
Keywords. LIDAR systems, sensor calibration, 
airborne surveying, strip adjustment. 

 
 
1 Introduction 
 

To fully exploit the potential of LIDAR 
technology and to consequently achieve maximum 

accuracy of the laser points on the ground, the entire 
multi-sensory measurement system should be 
carefully calibrated. The overall system calibration 
is a very complex task and includes individual 
sensor calibration as well as the determination of the 
sensors� spatial relationships. High-performance 
integrated GPS/INS systems provide the navigation 
data for the LIDAR data acquisition platform, and 
thus, the quality of the navigation solution is 
primarily the determinant of the possible accuracy 
of the laser spots. To achieve or approach this 
performance level of the navigation, however, the 
spatial relationship between the navigation sensor 
and the laser scanner (called the mounting bias or 
boresight) must be known with high accuracy. 

LIDAR systems include at least three main 
sensors, GPS positioning sensor, INS navigation 
sensor, and the laser-scanning device. The laser 
system measures the distances from the sensor to the 
ground surface. The coordinates of the ground point 
from where the laser pulse returned can be 
calculated if the travel distance of the laser pulse, 
the laser beam orientation, and the position of the 
laser scanner are known. Various things such as 
positioning errors, e.g., temporary GPS anomalies 
and/or misalignment between the laser and 
navigation systems can cause a misfit between the 
LIDAR points and the true surface or a difference 
between surfaces obtained from two LIDAR strips 
covering the same area. In general, the lack of 
feedback in the data flow in LIDAR systems makes 
the whole system more vulnerable to systematic 
errors and that seriously affects the quality of the 
LIDAR data. Baltsavias (1999) presents an 
overview of basic relations and error formulas 
concerning airborne laser scanning and a large 
number of publications report the existence of 
systematic errors. The solution for dealing with and 
eliminating the effect of systematic errors can be 
categorized into two groups. One approach is based 
on the introduction of a correction transformation of 
the laser points to minimize the difference between 
the corresponding LIDAR patches and ground truth. 
Kilian (1996) presents a method of transforming 
overlapping LIDAR strips to make them coincide 
with each other using control and tie points in a 
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similar way to photogrammetric block adjustment. 
The other technique attempts to rigorously model 
the system to recover the systematic errors. Burman 
(2000) treats the discrepancies between overlapping 
strips as orientation errors, with special attention 
given to the alignment error between the INS and 
laser scanner. Filin (2001) presents a similar 
method for recovering the systematic errors with 
respect to the boresight misalignment problem. The 
method described in this paper belongs to that 
second group as it addresses only a specific subtask 
of the overall system calibration process � finding 
the boresight misalignment of LIDAR systems 
based on measured discrepancies between 
overlapping strips. 

There are a few methods for obtaining the 
boresight misalignment, which normally refers to 
only the determination of the rotation angles 
between the INS and laser scanner systems. The 
most common method is a simple trial and error 
approach, where the operator interactively changes 
the angles to reach some fit of the LIDAR spots 
with respect to some known surface. A more 
advanced, but still human-based technique uses 
block adjustment with control. Since the ground 
surfaces are not always known or not at the required 
accuracy level, preference should be given to 
techniques which do not require a priori knowledge 
of the surface.  

The proposed automatic boresight determination 
method does not require any ground control and is 
based on two/three or more overlapping LIDAR 
strips flown in different directions. The surface 
differences from the different strips over the same 
area are considered as observations and an 
adjustment is formed to determine the boresight 
misalignment angles. The developed technique is 
based on the availability of multiple overlapping 
LIDAR strips over an unknown surface, although 
ground truth is also used if available. The surface 
where the LIDAR strips overlap must have certain 
characteristics in order to make the process work. 
There should be observable horizontal and vertical 
discrepancies between the different LIDAR 
datasets, however, extreme variations in height as 
well as densely-vegetated or wooded areas should 
be avoided. The LIDAR strips should be flown in a 
certain pattern as discussed later. 

 
2 LIDAR Boresight Misalignment 

The coordinates of a laser point are a function of 
the exterior orientation of the laser sensor and the 
laser range vector. The observation equation is:  

                                  
)(,, INSL

INS
L

M
INSINSMkM brRRrr +⋅+=  (1) 

 
where   

kMr ,  ― 3D coordinates of point 
k in the mapping frame 

INSMr ,  ― 3D INS coordinates in 
the mapping frame 

M
INSR  ― 

rotation matrix between 
the INS frame and 
mapping frame, 
measured by GPS/INS 

INS
LR  ― 

boresight matrix 
between the laser frame 
and INS frame  

Lr  ― 3D object coordinates in 
laser frame 

INSb  ― boresight offset 
component 

  
The INS frame is usually considered as the local 
reference system, thus the navigation solution is 
computed for this frame. The spatial connection 
between the INS and laser systems, including an 
offset vector and rotation matrix between the two 
systems, has to be known with high accuracy. The 
critical component is the rotation since the object 
distance amplifies the effect of any angular 
inaccuracy, while the effect of any offset error does 
not depend on the flying height. The rotation can be 
described by three rotation angles, ω rotation around 
the x-axis, ϕ rotation around the y-axis and κ around 
the z-axis of the laser frame. The approximate 
values of the three rotation angles between the INS 
and the laser frames are known from the mechanical 
alignment. The actual angles differ slightly from 
these nominal values. The boresight misalignment 
problem is to determine these three misalignment 
angles. Any difference from the real values results 
in a misfit between LIDAR points and the ground 
surface; the calculated coordinates of the LIDAR 
points are not correct. In this section, the influence 
of the different boresight misalignment angles on 
the accuracy of 3D object coordinates is described 
briefly. The coordinate system definition 
(Baltsavias, 1999) shown in Figure 1 will be used in 
the following discussions to illustrate the effect of 
the boresight misalignment angles. 

In order to analyze the effect of the different 
misalignment angles, the following simplifying 
assumptions are used: the terrain is flat, scanning is 
performed in a vertical plane perpendicular to the 
flight direction, and the flight line is horizontal 
(ω=0, ϕ=0, the κ rotation angle can have any value). 
X, Y, Z  defines a right-handed object coordinate 
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system with the origin at the nadir of the origin of 
the local coordinate system, denoted by x,y,z and 
centered at the laser beam origin. The positive x-
axis is in the flight direction, y is position starboard. 
The misalignment errors dω, dϕ and dκ refer to the 
respective axes of the local coordinate system. κ is 
the rotation from the X-axis to the x-axis. β is the 
scan angle, it has positive values for scans to the 
left of the flying direction, else negative, h denotes 
the flying height. 

 
Figure 1. Coordinate system definition. 

Roll misalignment, shown in Figure 2a, causes a 
shift across the flying direction in both horizontal 
and vertical coordinates. As a result, the surface 
becomes tilted, one side of the flying direction has a 
vertical shift upward and the other side has vertical 
shift downward. Under the flight line, at nadir there 
is no vertical shift; farther from the flight line the 
shift is becoming bigger. Roll misalignment has no 
effect in the flight direction. The formulas below 
show the errors in both the local and object 
coordinates caused by dω.  
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Table 1 contains the coordinate errors in the 
local coordinate system at different scan angles in 

the case of a 3 arc-minute roll misalignment at 1000 
m flying height. 

 
(a) 

 
(b) 

Figure 2. Effect of roll (a) and pitch (b) 
misalignment. 

 
Table 1. Coordinate errors caused by roll 

misalignment. 
 ∆∆∆∆x [cm] ∆∆∆∆y [cm] ∆∆∆∆z [cm] 

+30°°°° 0 87 50 
+20°°°° 0 87 32 
+10°°°° 0 87 15 

0°°°° 0 87 0 
-10°°°° 0 87 -15 
-20°°°° 0 87 -32 
-30°°°° 0 87 -50 

 
Misalignment in pitch, shown in Figure 2b, 

causes a constant shift along the flying direction; the 
vertical shift is negligibly small. dϕ has no effect 
across the flying direction. The formulas below 
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show the local and object coordinate errors caused 
by pitch misalignment. 
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Table 2 contains the coordinate errors in the 

local coordinate system at different scan angles in 
the case of a 3 arc-minute pitch misalignment 
at1000 m flying height. 

 
Table 2. Coordinate errors caused by pitch 

misalignment. 
 ∆∆∆∆x [cm] ∆∆∆∆y [cm] ∆∆∆∆z [cm] 

+30°°°° -87 0 0 
+20°°°° -87 0 0 
+10°°°° -87 0 0 

0°°°° -87 0 0 
-10°°°° -87 0 0 
-20°°°° -87 0 0 
-30°°°° -87 0 0 

 
Misalignment in heading, shown in Figure 3 

causes a variable shift along the flying direction. 
Under the flight line there is no shift, the farther the 
LIDAR point from the flight line, the bigger the 
coordinate error. The sign of the shift is different on 
opposing sides. The shift across the flying direction 
is negligibly small and this misalignment has no 
effect on the vertical coordinates. The impact of any 
heading misalignment on the calculated coordinates 
is much less severe than the effect of same 
magnitude misalignment of roll or pitch; therefore, 
heading misalignment is the most difficult one to 
determine. In fact, during data processing some 
users just assume that the heading misalignment is 
zero. The formulas below show the coordinate 
errors caused by dκ in the local and object 
coordinate system. 
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Figure 3. Effect of heading misalignment. 

 

Table 3 contains the coordinate errors in the 
local coordinate system at different scan angles in 
the case of a 3 arc-minute heading misalignment at 
1000 m flying height. 

 
Table 3. Coordinate errors caused by heading 

misalignment. 
 ∆∆∆∆x [cm] ∆∆∆∆y [cm] ∆∆∆∆z [cm] 

+30°°°° -50 0 0 
+20°°°° -32 0 0 
+10°°°° -15 0 0 

0°°°° 0 0 0 
-10°°°° 15 0 0 
-20°°°° 32 0 0 
-30°°°° 50 0 0 

 
The above description of the different boresight 

misalignment situations clearly shows that the effect 
of the three misalignment angles is different and 
varies by location. Therefore, overlapping LIDAR 
strips flown in different directions will not fit to 
each other, resulting in observable horizontal and 
vertical discrepancies, which could be significant at 
high flying altitudes. 
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3 Concept of Boresight Misalignment 
Determination 
 

The proposed method, shown in Figure 4 
requires overlapping LIDAR strips. The more strips 
are used, the more reliable the results are. Without 
ground control, the horizontal and vertical 
discrepancies between the strips are used to 
determine the unknown misalignment angles. The 
discrepancies between LIDAR strips can be 
determined either by manual or automatic 
processing. Automatic processing starts with 
segmentation of LIDAR data. Segmentation is the 
process of selecting appropriate areas for obtaining 
reliable surface difference values. Forested areas, 
densely built-up areas, any moving objects are to be 
avoided. Since the coordinate discrepancies are 
bigger farther from the flight line, the ideal areas 
for boresight purpose are near the borders of the 
overlapping area, where the coordinate 
discrepancies are the most significant.  
 

 
Figure 4. Concept of boresight misalignment 

determination. 

Comparing different surfaces formed by 
randomly scattered points is a non-trivial task and 
the effectiveness of this process depends a lot on the 
point density of the LIDAR points and the overall 
terrain characteristics of the overlapping area. A 
frequently used technique is interpolation into 
regular grid. The discrepancies then can be 
determined by surface matching of selected 
segments, or profile matching of man-made objects 
performed between the different strips. New LIDAR 
systems are capable of providing intensity data 
besides elevation data, thus intensity data can 
provide excellent support for determining 
discrepancies between different strips. An example 
of how intensity data could help is matching over 
flat areas. In this case, elevation data cannot be 
matched based on the elevation differences; 
however, intensity contains enough information to 
perform matching and determine discrepancies at 
these areas. Figure 5 shows range and intensity data. 
In a sense, intensity data make it possible to use 
more areas in the boresight adjustment that could 
not be used if only elevation data were available. 
Finally, once the surface differences are known at 
regions of the overlapping area, a least squares 
adjustment can be formed for the unknown 
misalignment angles, which will be discussed in 
detail in the next section. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Elevation vs. intensity data. 
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4 The Proposed Adjustment Method 

 
The proposed adjustment method is based on 

the observation Equation 1 and is concerned only 
with the rotation angles between the INS and the 
laser systems. The offset components are ignored 
since their inaccuracy is negligibly small both in 
absolute terms and compared to the effect of any 
angular inaccuracy between the two systems. The 
adjustment takes the observed discrepancies 
between the overlapping strips; expressed as 
matched virtual LIDAR points. The orientation of 
the data acquisition platform, including position 
and attitude, is required in addition to their 
coordinates. The coarse boresight angles and 
weights for the observed horizontal and vertical 
differences can be specified. The concept is to 
eliminate the surface differences by estimating the 
correct rotation angles between the INS and the 
laser systems.  

Without proper boresight alignment, the 
calculated ground coordinates of a laser point or the 
surface they represent will be different in the 
overlapping area. The coordinates, however, can 
easily be corrected by rotating the range vector by 
the corrected boresight angles ( INS

LR ) in the laser 
frame. 
 

ML

INS
L

M
INS

corr

a

a

a

g

g

g

g

g

g

Z
Y
X

Z
Y
X

Z
Y
X

RR















+
















=
















 

 
where 

corr

g

g

g

Z
Y
X
















 

 
M
INSR  is the rotation matrix between the INS and 

mapping frame, 
 

L

g

g

g

Z
Y
X
















  is the range vector in the laser system,  

M

a

a

a

Z
Y
X
















 

If the coarse boresight angles are zero, the INS
LR  

matrix only contains the unknown boresight 
misalignment angles. Since the boresight 
misalignment angles are differential small angles, 
the rotation matrix can be written in the usual 
differential form: 
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In the case of non-zero coarse boresight 
misalignment angles, the INS

LR  matrix contains 
(ω+dω), (ϕ+dϕ), (κ+dκ) rotation angles. 

For two overlapping LIDAR strips, the boresight 
angles can be found using the fact that the matched 
virtual points in the two strips should have the same 
coordinates; the difference between the corrected 
coordinates should be zero. In the case of two 
overlapping LIDAR strips, three equations 
containing the unknown three boresight 
misalignment angles can be formed at each pair of 
points, see Equation 2.  

The unknown boresight misalignment angles can 
be found by least squares adjustment (A. Detrekoi, 
1991) by minimizing the square sum of the 
discrepancies between the corrected coordinates of 
the matched virtual point pairs. Since the vertical 
matching results are more reliable than the 
horizontal ones, bigger weight is applied for the 
vertical coordinate differences than for the 
horizontal ones. As a consequence, the roll 
misalignment will be more reliable than the pitch or 
heading components. The more strips are used in the 
adjustment, the more reliable the results. 

 

 
 
 

 

are the corrected ground 
coordinates in the mapping frame, 

are the laser frame coordinates in 
the mapping frame at the time of 
measuring the ground point. 
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As a standard procedure, at the end of the 
adjustment the residual coordinate differences 
between the strips at the matched virtual points are 
calculated. Then after removing the points with big 
residuals, the adjustment process starts all over 
again. Large residuals are mainly caused by 
blunders in the input data, typically due to gross 
matching errors.  

 
5 Experiences 

 
The developed method for boresight 

misalignment has been implemented in a Matlab 
environment. In addition, in house C++ software 
modules as well as generic programs have been 
used to realize some of the required processing 
tasks. In the first phase, extensive simulations were 
performed to check implementation correctness and 
to validate the performance potential. After some 
fine-tuning of both the algorithm and its 
implementation, tests were carried out on real 
datasets. For illustration purposes, a project with a 
higher than usual boresight alignment error was 
selected for our discussion. The data were acquired 
over the Dallas, TX, area and contains two opposite 
and one cross strips; the flying height was about 
3,500 m with a point density of about 0.1 point/m². 
Three patches with an approximate size of 100m by 
100m were selected from the 3-strip overlapping 
area, as shown in Figure 6. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. Overlapping strips of the test data set 
with the three selected patches. 

During the preprocessing phase, about 50 virtual 
matching points were created for each patch. Then 
the adjustment process was performed separately for 
the three selected patches and also for all the three 
patches (174 points). Table 4 contains the results of 
the adjustments and the operator determined values 
from the trial and error method. We have to mention 
that in the case of the operator derived results the 
kappa misalignment angle was assumed to be zero. 
As discussed above it is the most difficult one to 
determine and its effect is negligible compared to 
the effect of the other two misalignment angles. The 
roll and pitch values of all the adjustments are 
practically the same as the operator derived values; 
the difference is a few arc seconds. Obviously, the 
adjustment including all the patches delivers the best 
results, but the individual adjustments of the patches 
have performed remarkably well, which is probably 
due to the large patch size and to the large number 
of points within the patch. As it was mentioned, the 
proposed method uses the observed discrepancies 
between overlapping LIDAR strips, and does not 
require ground truth. However, with this data set 
ground truth was available and therefore Table 4 
also contains the results of the adjustment with 
ground truth included. 
 
Table 4. Boresight misalignment results vs. operator 

derived values misalignment. 

 
Figure 7 shows LIDAR profiles � in fact, several 

profiles bundled together � to visually illustrate the 
difference between strips before and after the 
boresight misalignment was applied. The three 
LIDAR strips are color-coded, the difference in the 
displayed Y ground direction was originally about 
40 m. However, this difference subsequently went 
down to the decimeter level after applying the 
boresight misalignment correction (the discrepancy 
between the two arcs after the boresight correction 
is not a residual discrepancy; these are two different 
arcs behind each other). 

Adjustment result Patch 
included # 

dωωωω [rad] dϕϕϕϕ [rad] dκκκκ [rad] 

1 74 -0.00406 -0.01315 0.00172 

2 56 -0.00394 -0.01283 0.00217 

3 44 -0.00409 -0.01270 -0.00047 

1, 2, 3 174 -0.00402 -0.01292 0.00072 

Ground 86 -0.00393 -0.01307 0.00064 

1, 2, 3, G  260 -0.00399 -0.01294 0.00037 

Operator -0.00404 -0.01303 0 

193331 

192754 

194025 
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Figure 7. LIDAR profiles before and after boresight correction 

 
 
6 Conclusions 

 
LIDAR systems have to be well calibrated to 

deliver the most accurate three-dimensional 
coordinates of the measured ground surface. This 
paper focused on a specific subtask of the overall 
system calibration process � finding the boresight 
misalignment of LIDAR systems. A new method 
has been introduced to automate the determination 
of the boresight misalignment angles. The proposed 
method does not require known ground truth; it is 
based on the availability of overlapping LIDAR 
strips and navigation data. The boresight 
misalignment angles are found by least squares 
adjustment eliminating the observed discrepancies 
between the different strips. Results from 
simulations and real datasets have shown 
encouraging performance. The critical part of the 
solution is the determination of the discrepancies 
between the different LIDAR strips (the matching) 
� although the adjustment works for operator-based 
observations too. In the case of low LIDAR point 
density, the current performance of matching based 
on elevation data may not be sufficient. However, 
new LIDAR systems are capable of providing 
intensity data besides elevation data, which could 
adequately support the automatic determination of 
discrepancies between strips. As a future research 
task, the method can be extended to model other 
LIDAR-related errors such as variable scan angle 
error (smiley error). 
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ABSTRACT: 
 
To fully exploit the potential of LIDAR technology and to consequently achieve maximum accuracy of the laser points on the 
ground, the entire multi-sensory measurement system should be carefully calibrated. The overall system calibration is a very complex 
task and includes individual sensor calibration as well as the determination of the sensors’ spatial relationships. High-performance 
integrated GPS/INS systems provide the navigation data for the LIDAR data acquisition platform, and thus, the quality of the 
navigation solution is the primary determinant of the possible accuracy of the laser spots. To achieve or approach the performance 
level of the navigation, however, the spatial relationship between the navigation sensor and the laser scanner, called the mounting 
bias or boresight, must be known with high accuracy. 
 
This paper deals with a specific subtask of the overall system calibration process – finding the boresight misalignment of LIDAR 
systems. There are a few methods for obtaining the boresight misalignment, which normally refers only to the determination of the 
rotation angles between the INS and laser scanner systems. The most common method is a simple trial and error approach, where the 
operator interactively changes the angles to reach some fit of the LIDAR spots with respect to some known surface. A more 
advanced, but still human-based technique uses block adjustment with control points. Since the ground surfaces are not always 
known or not at the required accuracy level, preference is given to techniques which do not require a priori knowledge of the surface. 
In this paper we propose an automatic boresight determination method that does not require any ground control and is based on 
using two/three or more overlapping LIDAR strips flown in different directions. The surface differences from the different strips 
over the same area are considered as observations and an adjustment is formulated to determine the boresight misalignment angles. 
 
 

1. INTRODUCTION 

LIDAR systems are complex multi-sensory systems and include 
at least three main sensors, GPS and INS navigation sensors, 
and the laser-scanning device. The laser system measures the 
distances from the sensor to the ground surface. The coordinates 
of the ground point from where the laser pulse returned can be 
calculated if the travel distance of the laser pulse, the laser beam 
orientation and the position of the laser scanner are known. 
Various things such as positioning errors, e.g. temporary GPS 
anomalies, and/or misalignment between the laser and 
navigation systems can cause a misfit between the LIDAR 
points and the true surface or a difference between surfaces 
obtained from two LIDAR strips covering the same area. In 
general, the lack of feedback in the data flow in LIDAR systems 
makes the whole system more vulnerable to systematic errors 
and that seriously affects the quality of the LIDAR data. 
Baltsavias (1999) presents an overview of basic relations and 
error formulas concerning airborne laser scanning and a large 
number of publications report the existence of systematic errors. 
The solution for dealing with and eliminating the effect of 
systematic errors can be categorized into two groups. One 
approach is based on the introduction of a correction 
transformation of the laser points to minimize the difference 
between the corresponding LIDAR patches and ground truth. 
Kilian (1996) introduces a method of transforming overlapping 
LIDAR strips to make them coincide with each other using 
control and tie points in a similar way to photogrammetric block 
adjustment. The other technique attempts to rigorously model 
the system to recover the systematic errors. Burman (2000) 

treats the discrepancies between overlapping strips as 
orientation errors, with special attention given to the alignment 
error between the INS and laser scanner. Filin (2001) presents a 
similar method for recovering the systematic errors with respect 
to the boresight misalignment problem.  
 

This paper describes a method to automate the boresight 
misalignment of LIDAR systems. The developed technique is 
based on the availability of multiple overlapping LIDAR strips 
over an unknown surface, although ground truth is also used if 
available. The surface where the LIDAR strips overlap must 
have certain characteristics in order to make the process work. 
There should be observable horizontal and vertical 
discrepancies between the different LIDAR datasets, but 
extreme variations in height as well as densely-vegetated or 
wooded areas should be avoided. Finally, the LIDAR strips 
should be flown in certain pattern as discussed later. 
 
 

2. LIDAR BORESIGHT MISALIGNMENT 

Figure 1 shows the usual sensor configuration of airborne 
LIDAR systems. The navigation sensors are separated the most 
since the GPS antenna is installed on the top of the fuselage 
while the INS sensor is attached to the LIDAR system, which is 
down in the aircraft. The spatial relationship between the 
sensors should be known with high accuracy. In addition, 
maintaining a rigid connection between the sensors is also very 
important since modeling any changes in the sensor geometry in 
time would further increase the complexity of the system model 
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and perhaps add to the overall error. The INS frame is usually 
considered as the local reference system; thus the navigation 
solution is computed in this frame. The spatial relationship 
between the laser scanner and the INS is defined by the offset 
and rotation between the two systems. The critical component 
here is the rotation since the object distance amplifies the effect 
of an angular inaccuracy, while the effect of an inaccuracy in 
the offset does not depend on the flying height. The description 
of the effects of the different boresight misalignment angles is 
omitted here; for details see e.g. (Baltsavias, 1999). 
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XINS
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YINS

ZM

XM
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Figure 1. LIDAR system sensor configuration. 
 

The coordinates of a laser point are a function of the 
exterior orientation of the laser sensor and the laser range 
vector. The observation equation is:  
                                    

)(,, INSL
INS
L

M
INSINSMkM brRRrr +⋅+=   (1) 

where  

kMr ,  ― 3D coordinates of point k in the 
mapping frame 

INSMr ,  ― 3D INS coordinates in the mapping 
frame 

M
INSR  ― 

rotation matrix between the INS 
frame and mapping frame, 
measured by GPS/INS 

INS
LR  ― boresight matrix between the laser 

frame and INS frame  

Lr  ― 3D object coordinates in laser 
frame 

INSb  ― boresight offset component 
                        

To obtain the local object coordinates of a LIDAR point, 
the laser range vector has to be reduced to the INS system by 
applying the shift and rotation between the two systems, which 
results in the coordinates of the LIDAR point in the INS system. 
The GPS/INS-based navigation provides the orientation of the 
INS frame, including position and attitude; thus the mapping 
frame coordinates can be subsequently derived. In our 
discussion, the automated determination of the rotation 
component, the boresight matrix between the INS and the laser 
frame, is addressed. 

 
The boresight rotation can be described by three rotation 

angles, ω rotation around the x-axis, ϕ rotation around the y-
axis, and κ around the z-axis in the laser sensor frame. The 
approximate values of the three rotation angles between the INS 
and the laser frames are known from the mechanical alignment. 
The actual angles differ slightly from these nominal values. The 

boresight misalignment problem is to determine these three 
misalignment angles. Any discrepancy in their values results in 
a misfit between the LIDAR points and the ground surface; the 
calculated coordinates of the LIDAR points are not correct. In 
case the ground surface is unknown, the effect of the 
misalignment can be seen if different overlapping LIDAR strips 
are flown in different directions. Figures 2-3 show a situation 
where the overlapping strips do not fit each other; the horizontal 
and vertical discrepancies can be substantial at high flying 
altitudes.  

Figure 2. Overlapping LIDAR strips. 
 

 
Figure 3. Surface differences at the selected area. 

 
Boresight misalignment has to be determined to obtain 

correct surface from the LIDAR data. The unknown boresight 
misalignment angles can be found with ground control or 
without it by using overlapping LIDAR strips flown in different 
directions. Since the true ground surfaces are not always 
available preference should be given to techniques that do not 
require a priori knowledge of the surface.  

 
 

3. CONCEPT OF AUTOMATED BORESIGHT 
MISALIGNMENT DETERMINATION  

The proposed method requires overlapping LIDAR strips. The 
more strips that are used, the more reliable the results are. 
Without ground control, the horizontal and vertical 
discrepancies between the strips are used to determine the 
unknown misalignment angles. Therefore, appropriate portions 
of the overlapping area have to be selected for observing surface 
differences. The ideal portions for this purpose are near the 
borders of the overlapping area, where the differences are more 
noticeable, like the Gruber point distribution in a stereo model. 
Comparing different surfaces formed by randomly scattered 
points is a non-trivial task and the effectiveness of this process 
depends a lot on the point density of the LIDAR points and the 
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overall terrain characteristics of the overlapping area. A 
frequently used technique is interpolation into a regular grid. 
The discrepancies then can be determined relatively easily by 
surface matching of the selected regions or profile matching of 
man-made objects, etc. Once the surface differences are known 
at certain regions of the overlapping area, a least squares 
adjustment can be formed for the unknown misalignment 
angles. In this discussion, the main steps are introduced briefly; 
only the last step, the adjustment of the boresight angles, is 
discussed in detail. 
 
3.1 Identifying Areas for Comparison by Segmentation 

Segmentation is the process of selecting appropriate areas for 
obtaining reliable surface difference values. Forested areas, 
complex buildings, and moving objects are to be avoided.  
Smoothly rolling terrains, however, are ideal areas since they 
exhibit only limited undulations, differences can be observed 
yet their surface representation does not require excessive 
spatial sampling. These types of areas can effectively cope with 
various LIDAR configurations, coming from different flying 
heights, pulse repetition rates, scan angles and flying speeds, all 
resulting in different point patterns and point densities. From 
the potentially viable segments, a few should finally be selected 
based on their closeness to the overlapping area boundary and 
for their even distribution. 
 
3.2 Surface Interpolation 

Various surface interpolation methods exist and are used in 
practice to deal with irregularly spaced surface points or to 
convert them into a regular grid. Most techniques are based on a 
TIN model, although many others techniques are also reported 
in the literature. After testing some of the commonly used 
methods, we found that the local methods such as weighted 
average interpolation where the unknown values are calculated 
from the surrounding known points are not appropriate for the 
interpolation of the sparse LIDAR data (in our investigations, 
we were primarily concerned with LIDAR surveys conducted at 
regular or higher flying height). Similarly, global methods such 
as polynomial interpolation may provide a better approximation 
of the LIDAR surface, but these do not adequately represent 
smaller changes of the surface. Consequently, we decided on an 
interpolation method that would combine Fourier-series and 
polynomial models. In the first step, a least squares adjustment 
was formulated for determining the Fourier-series coefficients. 
Since the discrete Fourier-series is based on evenly-spaced data, 
it cannot be directly applied to approximate surfaces from 
irregularly scattered LIDAR points as the coefficients of the 
Fourier-series cannot be calculated in the usual way. Thereafter, 
the model was extended to include polynomial coefficients. In 
our experiences, the combined model has shown a promising 
performance, as the polynomial components seemed to preserve 
the overall trend of the surface while the Fourier component 
appeared to adequately handle the smaller local changes. Figure 
3 shows surfaces modeled by the combined method (Fourier-
series and third order polynomial interpolation). 
 
3.3 Matching of Selected Areas 

Matching in our context is the process of finding the differences 
in all three dimensions between the selected and interpolated 
small segments of the overlapping area. These offset values can 
be formed between any pairs of LIDAR data strips. Matching in 
general is an extremely broad topic. Although the number of 
image matching methods is almost countless, most of them are 

based on correlation or gradient discrepancies (Sun, 1998). A 
popular method in mapping is least squares matching, 
introduced by Gruen (1985), which usually delivers excellent 
results provided that good initial approximations are available. 
The reliability of the matching of LIDAR points depends 
primarily on the point density, which, in turn, depends on many 
factors such as flying height or swath width. Our investigation 
is concerned with relatively high flying height surveys, where 
the laser point density is rather low, which results in less 
reliable matching. During our tests, correlation matching was 
used primarily to determine the discrepancies of overlapping 
LIDAR strips. The results were mixed and this task needs 
further research effort to achieve consistent performance. 
 
 

4. ADJUSTMENT METHOD 

The proposed adjustment method is based on the observation 
equation (1) and is concerned only with the rotation angles 
between the INS and laser systems. The offset components are 
ignored since their inaccuracy is negligibly small both in 
absolute terms and compared to the effect of any inaccuracy in 
the rotation angles between the two systems. This results from 
the fact that the effect of an angular inaccuracy is amplified by 
the object distance, while the effect of an inaccuracy in the 
offset does not depend on the flying height. 
 

The principle behind this method is very simple. Based on 
the observed differences, the misaligment angles are iteratively 
adjusted to reduce the surface discrepancies in object space. To 
apply the boresight misaligment and thus to correct the LIDAR 
point coordinates in object space, all the terms of the 
observation equation should be known. Therefore, the sensor 
platform orientation should be known for each laser point. 
Obviously, this is not really a strict condition since this 
information is always available by definition. Finding the 
surface differences, however, is a less than trivial task as it was 
briefly discussed earlier. Figure 4 shows the main steps of the 
adjustment method. To partially compensate for the uncertainty 
of the matching, a refinement has been included such that with 
the initial boresight misalignment results, the surface 
differences are recalculated and the whole adjustment process is 
repeated. 

 
The adjustment process starts by taking the surface 

differences, which are expressed as matched virtual laser points. 
These points are determined a priori for all the surface patches 
of the overlapping area. Besides their coordinates, the 
orientation of the data acquisition platform, including position 
and attitude, is required. In addition, the coarse boresight angles 
and weights for vertical and horizontal control can be specified. 
The concept is to eliminate the surface differences by estimating 
the correct rotation angles between the INS and laser systems. 
Without proper boresight alignment, the calculated ground 
coordinates of a laser point or the surface they represent will be 
different in the overlapping area. The coordinates, however, can 
easily be corrected by rotating the range vector by the corrected 

boresight angles ( INS
LR ) in the laser frame. 
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If the coarse boresight angles are zero, the INS
LR  matrix 

only contains the unknown boresight misalignment angles. 
Since the boresight misalignment angles are differential small 
angles, the rotation matrix can be written in the usual 
differential form: 
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For non-zero coarse boresight misalignment angles, the 

INS
LR  matrix contains the (ω+dω), (ϕ+dϕ), (κ+dκ) rotation 

angles. 
   
For two overlapping LIDAR strips, the boresight angles can 

be found using the fact that the matched virtual points in the 
two strips should have the same coordinates, so the difference 
between the corrected coordinates should be zero, Equation 3. 
Three equations can be formed at each pair of points, which 
together contain the unknown three boresight misalignment 
angles. 
 

 

 
 

 
Figure 4. Main steps of the adjustment process. 
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are the corrected ground coordinates
in the mapping frame, 

are the laser frame coordinates in the
mapping frame at the time of
measuring the ground point. 

is the rotation matrix between the INS 
and mapping frame, 
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The navigation data of the matched virtual points are 
either known or can be interpolated using the navigation data 
of the surrounding laser points. If n overlapping strips are 
flown, 3n equations can be formed at each matched virtual 
point. In this case, the unknown boresight misalignment 
angles can be found using least squares adjustment with the 
condition that the square sum of the differences between the 
corrected coordinates of the matched virtual points in the 
different strips is minimum. For the typical three overlapping 
strips case, Equation 4 can be formed, where m is the number 
of matched virtual points. Since the vertical matching results 
are usually more reliable than the horizontal ones, more 
weight is preferable for the vertical coordinate difference 
residuals (wv) than for the horizontal ones (wh). As a 
consequence, the roll misalignment will be more reliable than 
the pitch or heading components. 
 

As a standard procedure, at the end of the adjustment the 
residual coordinate differences between the strips at the 
matched virtual points are calculated. Then after removing 
the points with big residuals, the adjustment process starts all 
over again. Large residuals are mainly caused by blunders in 
the input data, typically due to gross matching errors. As 
another step in dealing with the matching uncertainty, the 
whole matching process is repeated on the boresight 
misalignment corrected data as the differences should be 
smaller and thus better matching performance is expected. 
 
 
 

5. EXPERIENCES 

The developed method for boresight misalignment has been 
implemented in a Matlab environment. In addition, in house 
C++ software modules as well as generic programs have been 
used to realize some of the required processing tasks. In the 
first phase, extensive simulations were performed to check 
implementation correctness and to validate the performance 
potential. After some fine-tuning of both the algorithm and 
its implementation, tests were carried out on real datasets. 
For the purpose of illustration, a project with a higher than 
usual boresight alignment error has been selected for our 
discussion. The data was acquired over the Dallas, TX area 
and the flying height was about 3,500 m with a point density 
of about 0.1 point/m². Six patches with an approximate size 
of 100 m by 100m have been selected from the 3-strip 
overlapping area. 
 
During the preprocessing phase, about 50 virtual matching 
points were created for each patch. Then the adjustment 
process was performed separately for the 6 selected patches 
and also for all 6 patches (291 points). Table 5 contains the 
results of the seven adjustments and the operator determined 
values. The roll and pitch values of all seven adjustments are 
practically the same as the operator derived values; the 
difference is a few arc seconds. Obviously, the adjustment 
including all the patches delivers the best results, but the 
individual adjustments of the patches have performed 
remarkably well, which is probably due to the large patch 
size and to the large number of points within the patch. 
 

 

 
Table 5. Boresight misalignment results vs. operator derived values. 

 

 
Figure 6. LIDAR profiles before and after the boresight misalignment has been applied. 

First Adjustment # Patch Included Number Of 
Points Dωωωω [RAD] Dϕϕϕϕ [RAD] Dκκκκ [RAD] 

1 1 74 -0.00406 -0.01315  0.00172 

2 2 56 -0.00394 -0.01283  0.00217 

3 3 44 -0.00409 -0.01270 -0.00047 
4 1, 2, 3 174 -0.00402 -0.01292  0.00072 

5 Ground truth 86 -0.00393 -0.01307  0.00064 

6 1, 2, 3 and ground 260 -0.00399 -0.01294  0.00037 
Operator   -0.00404 -0.01303  
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Figure 6 shows LIDAR profiles – in fact, several profiles 
bundled together – to visually illustrate the difference 
between before and after the boresight misalignment has been 
applied. The three LIDAR strips are color-coded and the 
difference in the displayed Y ground direction was originally 
about 40 m. However, this difference subsequently went 
down to the meter level after applying the boresight 
misalignment correction (remember that this project having 
extreme characteristics was intentionally selected). 
 
 

6. CONCLUSIONS 

LIDAR systems have to be well calibrated to deliver accurate 
three-dimensional coordinates of the measured ground 
surface. Boresight misalignment as part of the overall multi-
sensor system calibration problem is a source of systematic 
errors and thus can cause a mismatch between datasets 
obtained from different LIDAR strips or ground truth. The 
impact of these discrepancies is especially significant for 
higher flying height surveys.  
 

In this paper, a new method has been introduced to 
automate the determination of the boresight misalignment 
angles. Boresight misalignment can be determined provided 
sufficient ground control is available. In lack of ground 
control, overlapping LIDAR strips can be used to achieve the 
same results. The developed method is based on the 
differences observed between the overlapping LIDAR strips 
and requires navigation data. Results from simulations and 
real datasets have shown encouraging performance. For not 
too complex areas, the solution is robust and there is very 
little dependency on the performance of matching – the 
process of finding the surface discrepancies. For feature-rich 
areas such as densely built-up urban areas or wooded areas, 
the current performance of matching may not be sufficient, 
although the adjustment will work for operator-based 
observations too. As a future research task, the method can 
be extended to model other LIDAR-related errors such as 
variable scan angle error (smiley error). 
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ABSTRACT 
 
Engineering scale mapping of highway corridors frequently requires extremely high accuracy. LiDAR 
technology offers an excellent tool to accomplish this task; LiDAR systems are complex multi-sensory 
systems, incorporating GPS and INS navigation sensors, and the laser-scanning device. The high 
complexity of the system, however, results potential error sources that can degrade the accuracy of the 
acquired LiDAR data. One way to achieve the high accuracy required by engineering scale mapping is 
using well-identifiable LiDAR-specific ground control targets. This paper is a continuation of a former 
paper titled “On the Use of LiDAR Specific Ground Targets” presented at the ASPRS Conference in 
Denver, 2004, where design of the optimal LiDAR targets, including shape, size, and signal response was 
discussed and some initial, limited experiences were presented. Since then additional tests were performed 
to further investigate the potential of using control targets for LiDAR data refinement. This paper provides 
a detailed performance analysis, investigating the achievable LiDAR data accuracy improvement using 
LiDAR-specific ground control targets. 
 
 

INTRODUCTION 
 
In the last few years LiDAR technology has become the preferred method for surface data acquisition. A 
broad range of applications exist and new applications are emerging, including forestry management, 
mapping of urban areas, flood and risk assessment, transportation and pipeline corridor mapping, etc., all 
requiring high accuracy LiDAR data. LiDAR systems are complex multi-sensory systems and incorporate 
at least three main sensors, GPS and INS navigation sensors, and the laser-scanning device. The complexity 
of the system results in possible error sources that can degrade the accuracy of the acquired LiDAR data. 
The errors in laser scanning data can come from individual sensor calibration or measurement errors, lack 
of synchronization, or misalignment between the different sensors. Baltsavias (1999) presents an overview 
of basic relations and error formulas concerning airborne laser scanning. 
 
Most of the systematic errors can be corrected by strip adjustment, eliminating the discrepancies between 
overlapping LiDAR strips. In the last few years several strip adjustment methods have been developed 
(Kilian et al., 1996; Crombaghs et al., 2000; Burman, 2000; Filin, 2001; Toth et al., 2002). All of these 
strip adjustment methods are based on the observed vertical or three-dimensional discrepancies between the 
overlapping LiDAR strips. Systematic planimetric errors are often much larger than height errors of the 
LiDAR data, and therefore, a three-dimensional strip adjustment is the desirable solution. Some of the strip 
adjustment methods work only with tie points (without any ground control information), however, the use 
of some type of ground control is desirable, since eliminating the relative discrepancies between 
overlapping strips does not provide an absolute check of the dataset. Applications demanding the highest 
accuracy require the elimination of absolute errors, which cannot be achieved without the use of absolute 
control information. Ground control information can be used in the strip adjustment process or after strip 

129



ASPRS 2005 Annual Conference 
Baltimore, Maryland ♦♦♦♦  March 7-11, 2005 

adjustment to correct the remaining absolute errors in the corrected strips. Many times after the strip 
adjustment, a horizontal surface with a known elevation is used to correct remaining vertical shifts in the 
data. However, remaining absolute errors after strip adjustment can be more complex than just a vertical 
shift. Three-dimensional ground control information, buildings, known roof structures, etc., are often used. 
However, this type of control information is not always available. Furthermore, due to the characteristics of 
laser data, the identification of distinct points of buildings and roof structures in LiDAR data can result in a 
biased position, which could affect the accuracy of the corrected LiDAR data. Therefore, for applications 
with high accuracy requirements, such as corridor mapping, well-identifiable LiDAR-specific ground 
control targets are necessary.   
 
Since the use of LiDAR-specific ground control targets represent a novel idea (not explored in practice 
yet), simulations were performed to determine the optimal LiDAR-target design; this includes the optimal 
target size, target shape, signal response, and a method to accurately determine the target position in the 
LiDAR dataset. Our previous paper titled “On the Use of LiDAR Specific Ground Targets” and presented 
at the ASPRS Conference in Denver, 2004 (Csanyi and Toth, 2004), provides a detailed description of the 
optimal target design along with some initial test results. Additional tests have been performed to 
investigate the potential of using the designed LiDAR-specific ground control targets for LiDAR data 
refinement. This paper is a continuation of our previous paper. After a brief summary of the optimal target 
design, test results based on two test flights are presented, providing a detailed performance analysis on the 
achievable improvement in LiDAR data accuracy using LiDAR-specific ground control targets. 
  
 

LiDAR TARGET DESIGN AND METHODOLOGY 
 
Preferably, an optimal LiDAR target should be automatically identifiable, easily distinguishable from 
surrounding objects in LiDAR data, and its horizontal and vertical position should be accurately 
measurable. The target design included the determination of the optimal target shape, target size, coating 
pattern, and related algorithms to accurately determine the planimetric and vertical position of targets in 
LiDAR data. To support the optimal LiDAR target design investigations extensive simulations were carried 
out. In this paper only a summary of the optimal target design is given, details can be found in (Csanyi and 
Toth, 2004).   
 
An optimal target is rotation invariant (circular-shaped), and in order to reliably and automatically identify 
LiDAR points reflected from the target, it has a flat surface, elevated from the ground. Since newer LiDAR 
systems are capable of measuring intensity data, the target has a coating that produces a substantially 
different reflectance than its surroundings to facilitate the target identification. Based on simulation results 
with different target designs, the conclusions were the following: (1) as expected, the larger the size the 
better the accuracy of the determined position, although the results showed that from about 5 points per m² 
point density, a 1m circle radius can already provide sufficient accuracy, and further increasing the target 
size will not lead to significant improvements, and (2) the two-concentric-circle design (the inner circle has 
half the radius of the outer circle) with different coatings results in significant accuracy improvements in 
the determined position. The achievable positioning accuracies of using optimal design targets obtained by 
simulation for different LiDAR point densities are shown in Table 1; a 10 cm vertical accuracy was 
assumed for the LiDAR.  
 

LiDAR point 
density [m] 

Accuracy of horizontal position
of target circle [cm] 

Accuracy of vertical position 
of target circle [cm] 

0.25*0.25 2-3 1.3 
0.50*0.50 5-10 2.5 
0.75*0.75 10-15 4.0 

 
Table 1. Estimate of positioning accuracies based on simulation results. 

 
Based on the above design, targets were fabricated by the Ohio Department of Transportation (ODOT) to 
support performance validation experiments under normal operational conditions; a target is shown in 
Figure 1. 
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Figure 1. ODOT manufactured LiDAR target. 
 
This target design greatly facilitates the automatic target identification in LiDAR data (the target with its 
vicinity is extracted by the known target position and expected maximum errors). Once the points on the 
target circle are found, based on the elevation and/or intensity data, the horizontal and vertical position of 
the origin can be determined by separate algorithms. The vertical position of the target is determined by 
fitting a horizontal plane to the LiDAR points on the target. The accuracy of the determined target height is: 

posvertical _σ  = Zσ  / n , where n is the number of points on the target, and Zσ  is the vertical coordinate 
accuracy of the LiDAR points. The horizontal target position is found by an algorithm similar to the 
Hough-transform. The search is based on the known radii of the target circles; the process finds all the 
possible locations of the target circle in a grid. Details can be found in (Csanyi and Toth, 2004). 
 
Ground control targets in LiDAR data can be used in the strip adjustment procedure, or after strip 
adjustment, to correct for absolute error in the data. In the latter case a simple vertical shift or a more 
complex 3-dimensional transformation is applied to the data based on the known and measured target 
positions. The applied transformation depends on the characteristics of the remaining errors and the number 
of available targets in the dataset. If only one or two ground targets are available in the dataset, a simple 
vertical offset correction can be performed. If three or more targets are available, a 3-dimensional similarity 
or a more complex transformation can be applied on the data to correct absolute errors. Corrections can be 
performed by strip or in more complex case strips can be subdivided into segments and each segment can 
have different correction parameters. 
 
 

TEST RESULTS 
 
This section presents test results from test flights aimed at infrastructure mapping of a transportation 
corridor and provides an analysis of the achievable LiDAR data accuracy using the designed LiDAR-
specific ground control targets. 
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Test area 
 
The test area in Ashtabula, Ohio, was surveyed using an Optech ALTM 30/70 LiDAR system operated by 
the Ohio Department of Transportation. The data was collected from an altitude of about 620 m with a 14-
degree field of view (7.0 half angle), at 70 Hz scanner frequency and 70 kHz pulse rate, resulting in a point 
density of about 5 points/m2. The map of the test area is shown in Figure 2a. Several LiDAR strips were 
flown over a 23 km long section of I-90 in both directions. Both elevation and intensity data were collected 
to facilitate LiDAR target identification in the data. To support our investigation, 15 sets of LiDAR targets 
were placed symmetrically along the two sides of the road with an average distance of 2,000 m between 
two targets. The origins of the target circles were GPS-surveyed at a horizontal coordinate accuracy within 
2 cm. 
 

 
(a) 

 
(b) 

Figure 2. Map of the test area (a) and target locations (b). 
 

132



ASPRS 2005 Annual Conference 
Baltimore, Maryland ♦♦♦♦  March 7-11, 2005 

For the discussion here, two overlapping strips flown in opposite directions were chosen; the map of the 
area is shown in Figure 2b. The strip flown in the SE to NW direction will be denoted as strip #1, and the 
strip flown in the opposite direction as strip #2. Due to the small scan angle (7-degree) and the low flying 
height the swath width of the strips was rather narrow. The strips flown along the road had a length of 
about 8.3 km, so ideally they would contain four targets on both sides of the road. Unfortunately, the 
overlap of the strips fluctuated and consequently a couple of targets were missed from both strips. 
Nevertheless, there are a couple of targets that can be found in both strips. The two strips with the targets 
are shown in Figure 3. Table 2 lists the targets that can be found on each strip. 
 
 

 
 

Figure 3. Strips #1 (yellow) and strip #2 (green) with targets. 
 

Strip #1 Strip #2 
307 107 
108 108 
308 109 
109 110 
309 310 
110  
310  

 
Table 2. Targets on strip #1 and strip #2. 

 
As Figure 3 illustrates, the distribution of targets in strip #1 is better than in strip #2. In strip #1, there are 
seven targets well distributed on both sides of the road. In the case of strip #2, the target distribution is not 
really optimal, as a couple of targets were missed – there are four targets on one side of the road and only 
one target on the other side. Figure 4 shows LiDAR elevation data of a smaller area containing one target 
on both sides of the road.  
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Figure 4. Targets in LiDAR data. 
 
Target identification based on elevation and intensity data  
 
To check the absolute accuracy of the LiDAR data, the targets are used as control points. The targets must 
be identified in the LiDAR strips based on their known coordinates (determined by GPS) and their 
expected maximum error in the data. After finding the approximate locations, a robust method, combining 
both the elevation and intensity information of the LiDAR points, selects the points falling on the target 
surface. As discussed in the target design section above, the targets have a two-concentric circle design 
with two different coatings resulting in significantly different intensity values of the LiDAR points on the 
inner circle and on the outer circle. This target design greatly facilitates the very accurate horizontal 
position determination of the targets in the LiDAR data by using our Hough-transform based method 
(Csanyi and Toth, 2004). 
 
Figure 5 illustrates the elevation data (a) and the intensity data (b) of a 3 m by 3 m area around target #108 
in strip #1 in. For better visualization, the elevation and intensity values of the LiDAR points are 
interpolated to grid, and they are shown in grey-scale by elevation and intensity values, respectively. The 
LiDAR points on the target are well distinguishable from the ground in both the elevation and intensity data 
and the intensity information nicely separates the target points on the inner circle (white coating) and outer 
circle (black coating). 
                

 

(a)                                                                (b) 
Figure 5. LiDAR target in elevation (a) and intensity data (b). 

 

308 

108
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(a) (b) 

Figure 6.  LiDAR elevation data of target #310, top view (a) and perspective view (b). 
 

It is interesting to mention that a few cm elevation differences between target points in the inner circle with 
white coating and the outer ring with black coating was noticeable in the elevation data of the target points 
as illustrated in Figure 6. This phenomenon does not affect the results of the investigations here but 
definitely requires further attention. 
 
Table 3 contains the coordinate errors at the target locations in strip #1 and strip #2, respectively. The 
coordinate errors are the differences between the computed target coordinates from the LiDAR strip and 
their known coordinates (GPS measurements). The standard deviations of the coordinate errors are also 
shown in Table 3. These standard deviation values shown in the table describe the standard deviations of 
the computed LiDAR target center locations (provided by the target identification algorithm). The 
horizontal position determination accuracies for all targets are within 10 cm; that is in good correspondence 
with our earlier simulation results. In fact, these values can be considered as an absolute measure, as the 
horizontal accuracy of the GPS surveyed coordinates is almost negligible to them. The elevation accuracy 
of the determined target position is calculated based on the standard deviation of the vertical coordinate of 
the LiDAR points and the number of points falling on the target. The area of the target circle is π m 
(radius=1 m), and the average point density of the test data is about 5 points/m2, thus about 15-16 points 
fall on each target. The vertical standard deviation provided by the ALTM 30/70 system is about 10 cm; 
therefore, the accuracy of the determined vertical target position is about 10 / 15 , ~2.5 cm. This value is 
close to the vertical accuracy of the GPS survey of the targets.  
 

Coordinate errors [m] Standard deviation [m] Target # 
Easting Northing Elevation Easting Northing Elevation 

108 0.06 -0.07 -0.051 0.08 0.08 0.025 
308 -0.04 -0.01 -0.089 0.04 0.03 0.025 
109 0.13 -0.00 -0.060 0.06 0.08 0.025 
309 0.03 -0.01 -0.082 0.05 0.07 0.025 
110 0.03 0.08 -0.035 0.05 0.05 0.025 
310 -0.01 -0.11 -0.053 0.03 0.05 0.025 
307 -0.01 0.03 -0.185 0.07 0.08 0.025 
Mean 0.03 -0.02 -0.079 0.05 0.06 0.025 

(a) 
Coordinate errors [m] Standard deviation [m] Target # 

Easting Northing Elevation Easting Northing Elevation 
107 0.03 0.08 -0.112 0.03 0.05 0.025 
108 0.01 -0.03 -0.144 0.04 0.05 0.025 
109 -0.05 0.07 -0.153 0.02 0.01 0.025 
110 -0.07 -0.01 -0.104 0.04 0.06 0.025 
310 0.03 0.16 -0.139 0.08 0.07 0.025 
Mean -0.01 0.05 -0.130 0.04 0.05 0.025 

(b) 
Table 3.  Target coordinate errors in strip #1 (a) and strip #2 (b). 
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Figure 7 illustrates target #109 in the two overlapping strips clearly showing a discrepancy between the two 
strips processed without the targets. 
 

(a) (b) 
Figure 7. Target #109 in strip #1 (a) and strip #2 (b). 

 
The measured coordinate errors in Table 3 clearly show a vertical error in both strips. In general, the target 
coordinates fall below the GPS determined target elevations. In the case of strip #2 the vertical coordinate 
error is even more significant, about 15 cm. The determined horizontal coordinate errors, however, are not 
significant; for a couple of targets the error is within the horizontal target coordinate determination 
accuracy. There are only a few targets where the horizontal errors are significant. The measured coordinate 
errors show that the LiDAR data is of good quality, but based on the targets the accuracy can be improved, 
especially the vertical accuracy, where the biggest errors were detected. Therefore, a three-dimensional 
similarity transformation was separately applied to both strips based on the measured target positions in the 
LiDAR strips and their known, GPS-surveyed coordinates. Table 4 a and b lists the residual coordinate 
errors at the targets after the transformation was applied for strip #1 and #2, respectively. 
 

Coordinate errors [m] Target # 
Easting Northing Elevation 

307 0.06 -0.06 0.051 
108 -0.04 0.00 0.004 
308 0.12 0.02 0.010 
109 0.03 0.01 -0.019 
309 0.02 0.11 0.006 
110 -0.02 -0.09 -0.021 
310 0.00 0.03 -0.031 

(a) 
Coordinate errors [m] Target # 

Easting Northing Elevation 
107 0.03 0.02 -0.002 
108 0.02 -0.09 0.011 
109 -0.03 0.00 -0.017 
110 0.10 -0.08 0.004 
310 0.06 0.07 0.003 

(b) 
Table 4. Residual coordinate errors at targets after transformation. 
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As expected, the horizontal coordinates did not improve much, since they were originally in the range of 
the horizontal coordinate determination accuracy (except for one or two points). However, the 
transformation significantly decreased the vertical coordinate errors and they are approximately in the 
range of the vertical accuracy of the determined target coordinates. This confirms that a similarity 
transformation, in general, is an adequate model to compensate for errors in this case. 
 
To assess the spatial extent of the determined errors and the validity of the model, a conventional analysis 
was performed to see the impact of using only a subset of the controls in the transformation parameter 
determination. Therefore, two targets, #310 and #108, were selected from the available seven targets in 
strip#1, and one target, #109, was selected from strip #2. The transformation parameters for the strips were 
recomputed without including these targets in the adjustment. Then, the excluded targets were used as 
check points to assess the LiDAR data accuracy improvement at these locations. The targets used as check 
points were selected so that the remaining targets used in the adjustment had good spatial distribution. In 
particular, the targets used did not lie close to one line – a dangerous configuration to calculate the 
transformation parameters. The residual coordinate errors after the transformation for both strips are shown 
in Table 5 a and b, respectively.   
 

Coordinate errors [m] Target # 
Easting Northing Elevation 

307 0.04 -0.05 0.054 
108 -0.06 0.00 0.005 
308 0.12 0.02 0.012 
109 0.03 0.01 -0.016 
309 0.02 0.11 0.009 
110 -0.02 -0.08 -0.019 
310 -0.04 0.03 -0.028 

(a) 
Coordinate errors [m] Target # 

Easting Northing Elevation 
107 0.01 0.03 -0.003 
108 -0.03 -0.07 0.006 
109 -0.09 0.03 -0.022 
110 0.02 -0.04 0.001 
310 -0.02 0.11 -0.003 

(b) 
Table 5. Residual coordinate errors at target locations. 

 
As shown by the residual errors, the transformation decreased the errors at the check points, indicating that 
the transformation parameters provide a valid model for the whole strip. Nevertheless, in some cases it may 
be necessary to segment the LiDAR strips to smaller segments and determine transformation parameters 
separately for each segment in order to compensate for the different natures and amplitudes of the errors in 
the different parts of the strip. Obviously, it is desirable to have LiDAR targets placed not too far from each 
other and well distributed spatially to ensure that the transformation based on the targets indeed improves 
the LiDAR data accuracy. 
 
Impact of the correction on road surface extraction 
 
The ultimate goal of applying the specifically designed LiDAR targets is to improve the accuracy of the 
LiDAR data, which in our case is to obtain the most accurate road surface data possible. To analyze the 
impact of using LiDAR targets, a reasonable approach is to select road surface locations from two 
overlapping strips and then check their discrepancies before and after the target-based correction is applied. 
Therefore, two 5 by 5 m road surface areas were selected from the overlapping area of the two strips; one 
was in the vicinity of target #109 (denoted area #1) and the other one was halfway between target #110 and 
#310 (denoted area #2). Since ground truth surface was not available to assess the achievable accuracy 
improvement, the elevation differences between the road surface patches in the two overlapping strips were 
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checked before and after applying the three-dimensional similarity transformation for both strips separately. 
Figure 7 a and b illustrates area #1 in strip #1 and strip #2 before and after the similarity transformation was 
applied. Similarly, Figure 8 a and b illustrate the case for area #2; in both cases, strip #1 is shown in white 
and strip #2 is green. 
 

 
(a) 

 
(b) 

Figure 7. Elevation difference at road area #1 in the two strips before (a) and after (b) transformation. 
 

 
(a) 

 
(b) 

Figure 8. Elevation difference at road area #2 in the two strips before (a) and after (b) transformation. 
 

Table 6 shows the elevation differences between the two strips at the selected two road areas before and 
after applying the similarity transformation to the LiDAR strips separately. The elevation difference was 
determined by fitting a plane to the data.  

  
Elevation difference [m] Road 

area Before After 
#1 -0.127 -0.038 
#2 -0.141 -0.056 

 
Table 6. Elevation differences between the two strips at the selected road areas. 

 
As Figures 7 and 8, and Table 6 clearly illustrate, after applying the transformation, based on the LiDAR 
targets, the accuracy improvement of the LiDAR data is significant. For both areas a similar magnitude of 
improvement was found; the original 13-14 cm elevation difference of the road surface decreased to the 3-5 
cm level, which is in the range of the combined error budget of the control determination accuracy and 
laser ranging error. 
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CONCLUSIONS 
 
Our test results showed that the specifically designed LiDAR targets are indeed useful in improving the 
accuracy of road surface extraction and other applications that require engineering scale mapping accuracy. 
Modeling the road surface with a plane, the vertical accuracy of the road was estimated at the 3-5 cm level, 
which is more or less the possible lower limit, as the combined error budget of the controls and laser 
ranging is in that range. To maintain this extremely high accuracy, a dense and well-distributed network of 
controls is needed. The tests also confirmed that the target design had fulfilled the expectations; the targets 
were automatically extracted and our combined elevation and intensity data-based algorithm facilitated 
improved coordinates. In summary, the use of LiDAR specific ground control is ready for normal mapping 
operations, although the cost of installing and surveying the targets is probably only affordable for 
applications requiring the highest accuracy. 
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ABSTRACT 
 
LiDAR technology has seen enormous developments in recent years, and became the primary tool for 
surface data acquisition. Since LiDAR is a complex multi-sensory system, the whole system has to be 
carefully calibrated to achieve the highest accuracy of the measured surface points. System calibration 
includes the calibration of individual sensors as well as the determination of the spatial relationship 
between different sensors. The calibration process has certain limitations; even after careful calibration 
some errors in the collected data can be experienced. Most of the systematic errors can be corrected by strip 
adjustment based on the observed discrepancies between overlapping strips.  However, eliminating the 
discrepancies between the strips does not necessarily provide an absolute check of the data; even if the 
different strips fit together, there can be absolute error in the data. Applications, demanding high accuracy 
require the elimination of these remaining errors. The introduction of ground control targets specifically 
designed for LiDAR can further improve the accuracy of the point cloud in both relative and absolute 
terms. Once the control targets are identified and their positions are determined in the data either a simple 
vertical offset or a more complex transformation can be applied to the point cloud to reduce the errors in it.  
This paper investigates the potential of using control targets for LiDAR data refinement. In particular, the 
achievable point accuracy using LiDAR-specific ground control targets is studied. The optimal design, size 
and signal response of the target is also discussed.  
 
 

INTRODUCTION 
 
In the last few years LiDAR technology has became the preferred method for surface data acquisition. A 
broad range of applications exists and new applications are emerging, including forestry management, 
mapping of urban areas, flood and risk assessment, corridor mapping, etc., all requiring high accuracy 
LiDAR data. LiDAR systems are complex multi-sensory systems and incorporate three main sensors, GPS 
and INS navigation sensors, and the laser-scanning device. The high complexity of the system results in a 
lot of possible error sources that can degrade the accuracy of the acquired LiDAR data. Most of the 
systematic errors can be corrected by strip adjustment, eliminating the discrepancies between overlapping 
strips, however many times absolute errors remain in the data, such as height offsets or more complex 
errors. Applications demanding the highest accuracy require the elimination of the remaining errors, which 
cannot be usually achieved without well-identifiable ground control targets in the surveyed area. This paper 
investigates the potential of using ground control targets specifically designed for LiDAR data. The first 
two sections provide a brief overview of the error budget of laser scanning and the correction possibilities; 
special attention is given to the typically used control information, then the optimal target design is 
addressed. Finally, test results are presented � how the designed ground targets could improve the final 
LiDAR data accuracy.  
 
 

ERROR BUDGET FOR LASER SCANNING 
 
Baltsavias (1999) presents an overview of basic relations and error formulas concerning airborne laser 
scanning and a large number of publications report on the existence of systematic errors. The errors in laser 
scanning data can be a result of individual sensor calibration or measurement errors, a lack of 
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synchronization or a misalignment between the different sensors; the error sources can be categorized into 
four main groups: 

! Sensor platform position and attitude errors (navigation solution) 
! Sensor calibration errors 
! Inter-sensor calibration errors 
! Miscellaneous errors 

Any of the above error sources translates to an error in the measured ground point coordinates, see Figure 
1. 
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Figure 1. LiDAR system components 
 
Sensor platform position and attitude errors are GPS/ IMU related errors. Positioning error is caused by 
errors related to the GPS measurements, which can be caused by atmospheric delay, cycle slip, and 
erroneous ambiguity resolution. Positioning errors are directly transferred to the ground coordinates of the 
measured points. Under normal conditions with differential GPS and post-processing, 10-15 cm positioning 
accuracy at 90% CEP can be expected. The attitude angles (the rotations of the aircraft) are measured by 
IMU, which consists of accelerometers and gyros, which are affected by time dependent drift. The accuracy 
of the determined aircraft attitude depends on the quality and frequency of the IMU and the combined 
GPS/IMU post-processing method (Kalman filtering).  
 
Sensor calibration errors include scan angle error, range measurement error and other errors related to the 
movement of the rotating mirror. Scan angle error causes the sides of the measured strip to bend up or 
down, and therefore, it is often called smiley error.  The contribution of the range measurement error to the 
coordinate errors is the less significant among the major error sources; however, the relative importance of 
this error in the total error budget is increasing with lower flying heights. Depending on the laser scanning 
system performance, the range measurement accuracy is a few cm. This is an important parameter to assess 
the maximum achievable point accuracy that can be expected from a LiDAR system if the major systematic 
errors are eliminated. 
 
Inter-sensor calibration errors are errors in the measured level arms between the three sensors (GPS, IMU 
and laser sensors) and any angular misalignments between the IMU and laser sensors, called the boresight 
misalignment. The angular misalignments are the more critical error sources since any angular inaccuracy, 
unlike linear offsets, is amplified by the flying height of the aircraft, and therefore, a small angular error 
can have significant effect on LiDAR point accuracy. The effect of errors in the level arms are usually not 
more than a few cm, while coordinate errors caused by boresight misalignment could reach meter or even 
10 meter level depending on the flying height. 
 

141



 
CORRECTION OF LASER SCANNER DATA 

 
The various errors can cause a misfit between measured LiDAR surface and the true surface or a difference 
between surfaces obtained from sevaral LiDAR strips covering the same area. Figure 2 illustrates this 
phenomenon. 
 

 
 

Figure 2. Discrepancies between overlapping strips. 
 

LiDAR data need to be corrected for the systematic errors, for instance by corrections from overlapping 
strips, in order to get an accurate model of the terrain surface. In the last few years different solutions have 
been developed that are all based on the observed discrepancies between different overlapping LiDAR 
strips. All these solutions are some kind of strip adjustments � they try to eliminate the discrepancies 
between matched surface patches of the overlapping strips. The solution for dealing with and eliminating 
the effect of systematic errors can be categorized into two groups. One approach is based on the 
introduction of a correction transformation of the laser points to minimize the difference between the 
corresponding LiDAR patches. This type of solution does not deal with the sources of the errors; it only 
eliminates their effect (Kilian et al., 1996; Crombaghs et al., 2000)). The disadvantage of this type of 
solution is that some non-linear effects, such as smiley error are not properly modeled. The other technique 
attempts to rigorously model the system to recover the systematic errors. This method assumes the 
knowledge of the flight trajectory. The main difficulty of this approach is the variety of the potential error 
sources and that some of the error sources have similar effect and are not separable (Burman, 2000; Filin, 
2001, Toth et al., 2002).  
 
All of the above strip adjustment methods are based on the observed vertical or three-dimensional 
discrepancies between the overlapping LiDAR strips. Systematic planimetric errors are often much larger 
than height errors of the LiDAR data, and therefore, a three-dimensional strip adjustment is the desirable 
solution. Some of the strip adjustment methods work only with tie points, without any ground control 
information, however the use of some type of ground control is desirable, since eliminating the relative 
discrepancies between overlapping strips does not provide an absolute check of the dataset.  Ground control 
information can be used in the strip adjustment process or after strip adjustment to correct the remaining 
absolute errors in the corrected strips. For example, known roof structures or corners of buildings could be 
used as ground control; unfortunately this type of control information is not always available. Furthermore, 
due to the characteristics of laser data, the identification of distinct points of buildings and roof structures in 
LiDAR data can result in a biased position, which could affect the accuracy of the corrected LiDAR data. 
Many times after the strip adjustment, horizontal surface with known elevation is used to correct remaining 
vertical shifts in the data. However remaining absolute errors after strip adjustment can be more complex 
than just a vertical shift, therefore for applications with high accuracy requirements, such as corridor 
mapping well-identifiable ground control targets are necessary. Based on the above mentioned problems 
with offset determination, the desirable ground control targets to satisfy high accuracy requirements should 
be rotation invariant, so the scan direction does not affect the accuracy of the determined position of the 
targets in LiDAR data. The targets should also have a well-defined shape that facilitates the accurate 
determination of their three-dimensional position in the laser data (model-based determination). 
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In the next section the optimal target design for LiDAR data is discussed and the achievable accuracies are 
analyzed. 
 
 

TARGET DESIGN 
 
If an optimal target design is sought, the objective is that the target has to be easily identifiable (preferable 
automatically), distinguishable from surrounding objects in LiDAR data and its horizontal and vertical 
position should be accurately measurable. The target design includes the determination of the optimal target 
shape, target size, coating pattern and algorithms to accurately determine the planimetric and vertical 
position of targets in LiDAR data. 
 
In photogrammetry, the usual ground controls are road intersections, signalized targets and other well-
identifiable structured objects or marks. Due to the different characteristics of LiDAR data, obviously, this 
type of ground control design is not appropriate for LiDAR targets. Because of the different possible scan 
directions and different point densities in different directions, the optimal LiDAR target should be rotation 
invariant, i.e., circle-shaped target. In order to reliably and automatically identify LiDAR points reflected 
from the target, the target should have a certain height with respect to its surrounding, so that it is elevated 
from the ground. Since newer LiDAR systems are capable of measuring intensity data, the target should 
have a coating that results in substantially different reflectance than its surrounding, which could also help 
the target identification. This target design facilitates the automatic target identification in LiDAR data 
based on their known position and the expected maximum errors in the data. 
 
Once the points on the target circle are found based on the elevation or intensity data, the horizontal and 
vertical position of the origin can be determined by separate algorithms. Figure 3 illustrates the circle-
fitting problem once the points on the circle are found. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 3. Circle fitting problem 
 

To accurately determine the vertical position of the target, the optimal solution is to have a flat horizontal 
target surface, thus the vertical position of the target can be determined by fitting a horizontal plane to the 
points fallen on the target, which is basically the averaging of the elevations of the target points. The 
accuracy of the determined target height can be determined by error propagation based on the standard 

deviation of the vertical coordinates of the LiDAR points: σ vertical pos=σ z / n , where n is the 
number of points on the target.  
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Once the points on the circle are found, the circle-fitting algorithm to accurately determine the planimetric 
position of the target circle is similar to the Hough-transform. The search is based on the known radius of 
the circle; it finds all the possible locations of the target circle in a grid. Looking at a LiDAR point lying 
somewhere on the circle, it is known that the origin of the circle must be somewhere within the circle 
drawn around the LiDAR point as origin with the known radius. Considering a second LiDAR point, the 
origin is somewhere in the intersection region of the two circles around the two LiDAR points, and so 
forth. An accumulator array is created with zero values; and then a point-by-point process will increment 
the grid cells under the circle with the origin of the LiDAR point. This is done for all the points lying on the 
target. The cells with the highest value give all the possible positions of the target origin. The center of 
gravity of these cells is accepted as the origin of the circle. Figure 4 illustrates the accumulator array and 
the fitted circle on an example at 50*50 cm LiDAR point density. The green patch shows the possible circle 
origin locations and the blue circles are all the possible locations of the target circle.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 4. Accumulator array and fitted circle 
 
Since the proposed LiDAR specific targets are mobile targets, and thus, are placed on the ground before 
flight, for economical reasons their size should be as small as possible. However, bigger target size means 
more points lying on the target, which results in better accuracy of the determined target position. 
Therefore to determine the optimal target size and coating pattern, extensive simulations were carried out. 
LiDAR points lying on the target circle were simulated in the case of different assumed circle radii and 
different coating patterns, such as one or two-concentric-circle design with different signal response 
coating. In the case of the two-concentric-circle design, the inner and outer circles have different signal 
responses, therefore, points on the outer ring and on the inside circle could be differentiated based on their 
intensity values. The achievable accuracy of the determined offsets mainly depends on the LiDAR point 
density with respect to the target size and, of course, on the LiDAR footprint size and the standard 
deviation of the elevation. Therefore, the simulations were carried out with three different point densities, 
0.25*0.25, 0.50*0.50, 0.75*0.75 m and LiDAR points were simulated according to their planimetric and 
vertical accuracy and distribution. Noise was given to the vertical coordinates according to normal 
distribution with 0.05m standard deviation, while planimetric coordinates were disturbed by a noise with 
0.25 m standard deviation. In the latter case, uniform distribution was assumed since the horizontal 
accuracy mainly depends on the footprint. Since the accuracy of the determined target position depends a 
lot on the actual point distribution on the target circle, whether there are points near the sides of the circle 
or not, to assess the achievable accuracy of the determined target position in LiDAR data, points were 
simulated several times and RMS (root mean square error) was calculated.  
 
Based on the simulation results with different target designs, the major findings are the following: As 
expected, the larger the size the better the positioning accuracy, however the results have shown that from 
about 5 points per m² point density, a 1m circle radius can already provide sufficient accuracy and further 
increasing the target size will not lead to significant improvements. The two-concentric-circle design means 
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significant improvement in the determined accuracy since it provides additional geometric constraint in 
contrast to the one-circle design. The two concentric circles (the inner has half the radius of the outer circle) 
should have different coating to produce a substantial difference in reflection signal in order to differentiate 
them in intensity data. 
 
The achievable positioning accuracies at the optimal target design in the case of different point densities are 
shown in Table 1.  
 

LiDAR point 
density [m] 

Accuracy of horizontal position 
of target circle [cm] 

Accuracy of vertical position 
of target circle [cm] 

0.25*0.25 2-3 0.7 
0.50*0.50 5-10 1.4 
0.75*0.75 10-15 2.2 

 
Table 1. Achievable positioning accuracies 

 
 

CORRECTION POSSIBILITIES USING GROUND CONTROL TARGETS 
 
Ground control targets in LiDAR data can be used in the strip adjustment procedure or after strip 
adjustment to correct remaining height offset or to apply a more complex, three-dimensional transformation 
to account for remaining vertical and planimetric offsets in the dataset. The applied transformation depends 
on the characteristics of the remaining errors and the number of available targets in the dataset. If only one 
or two ground targets are available in the dataset, a simple vertical offset correction can be performed. If 
three or more targets are available, 3-dimensional similarity or more complex transformation can be applied 
on the data to correct remaining absolute errors. Correction can be performed by strip or in more complex 
case strips can be subdivided into segments and each segment can have different correction parameters. 
 
 

TEST RESULTS 
 
Based on the simulation results for optimal target design, targets were fabricated. The test data was 
acquired by the Optech ALTM 30/70 LiDAR system of the Ohio Department of Transportation in 
Northeast Ohio. The data was collected from an altitude of about 850 m with 16-degree field of view (8.0 
half angle), at 70 Hz scanner frequency and 70 KHz pulse rate, which resulted in a point density of 5 
points/m². The map of the test area with the targets is shown in Figure 5. As the objective was to accurately 
model road surfaces, six targets were placed along State Route 11 for initial testing of the designed LiDAR 
targets. The first strip was flown from north to south direction along the road and then two cross strips were 
done in the east-west direction; strips are shown on the map. 
 
The data was processed in the usual way without using the LiDAR targets. Then the differences between 
known and measured target coordinates in the processed dataset were determined. Figure 6 illustrates target 
#106 in the two overlapping strips in front view (1st and 2nd strips). Note the observable difference between 
the two strips after processing; clearly indicating some remaining error in the data.  
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Figure 5. Test area with ground control targets 
 

 

 
 

Figure 6. Target #106 in strips #1 and strip #2 
 

The known and determined (by our algorithm) coordinates of the targets in strip #1 are shown in Table 2a. 
For better readability, coordinate errors at the target circles are also shown in Table 2b. The tables do not 
contain target #102 since accidentally the LiDAR strip did not cover this target, the LiDAR survey ended 
just few meters away that point. The flight was performed on January 29th, 2004 and unfortunately, the 
flight conditions were less than ideal; the ground was covered by deep snow. The targets were easily found 
in the data by elevation difference based on their known locations and the maximum expected error. Due to 
the snow cover, points on the inner and outer circle could not be differentiated based on the intensity data, 
therefore circle origins were located based on only the known outer 1m circle radius, which provides less 
accurate position. Figure 7 illustrates how targets #105 and #106 appeared in the elevation data in strip #1. 
For better visualization, the LiDAR surface was interpolated to a grid and the image was color coded by 
elevation. 
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Figure 7. LiDAR targets #105 and #106 in the elevation data 
 
The accuracy of the determined horizontal target positions is about 10 cm, while the vertical accuracy is 
about 2 cm. Comparing the known and measured target positions in the LiDAR data, 20-30 cm horizontal 
errors and 10-15 cm vertical errors were found in the processed dataset.  
 

Known coordinates [m] Measured coordinates [m] Target 
# Easting Northing Elevation Easting Northing Elevation 

101 523843.98 4605822.60 291.065 523844.19 4605822.79 290.944 
103 523829.27 4606449.44 289.362 523829.50 4606449.66 289.188 
104 523910.25 4606492.86 288.534 523910.53 4606493.00 288.415 
105 523842.52 4606796.61 288.804 523842.78 4606796.78 288.631 
106 523913.70 4606791.64 289.094 523914.00 4606791.84 288.977 

 
Table 2a. Known and measured target coordinates in strip #1 

 
 

Coordinate errors [m] Target
# Easting Northing Elevation 

101 0.21 0.19 -0.12 
103 0.23 0.22 -0.17 
104 0.28 0.14 -0.12 
105 0.26 0.17 -0.17 
106 0.30 0.20 -0.12 

  
Table 2b. Coordinate errors at target locations in strip #1 
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To improve the accuracy of the LiDAR data, a three-dimensional similarity transformation was performed 
on strip #1 based on the known and measured target positions. Since ground truth of the test area was not 
available, the transformation was performed based on targets #101, #105, and #106; then targets #103 and 
#104 were used as check points after the adjustment to assess the accuracy improvements of the LiDAR 
strip. Table 3 lists the residual coordinate errors in the dataset at the three target locations used in forming 
the similarity transformation as well as the remaining coordinate errors at targets #103 and #104 used as 
check points after applying the three-dimensional similarity transformation.  

 
Coordinate errors [m] Target

# Easting Northing Elevation 
101 -0.01 -0.03 0.00 
103 -0.02 0.03 0.01 
104 0.02 -0.11 -0.03 
105 -0.02 0.10 0.02 
106 0.02 -0.06 -0.02 

 
Table 3. Remaining errors after three-dimensional similarity transformation based on target # 101, #105, 

and #106. 
 

Comparing the target positions with their positions in the original dataset processed without the LiDAR 
targets, the accuracy improvement is obvious.  The residual horizontal coordinate errors at the three targets 
included in the three-dimensional similarity transformation are 5-10 cm, and the vertical residuals are 1-2 
cm, which is within the accuracy of the determined target positions. At the two check points, the originally 
20-30 cm horizontal errors of targets #103 and #104 have significantly decreased to about 10 cm, which is 
within the accuracy of the determined horizontal target positions. The improvement of the vertical 
coordinate accuracy is even more, the original 10-15 vertical errors were reduced to 1-2 cm, which is also 
within the accuracy of the determined vertical target positions. These results indicate that the overall 
coordinate accuracy of the strip increased significantly using the LiDAR specific targets.  
 
 

CONCLUSIONS 
 
This paper investigated the potential of using control targets for improving LiDAR data accuracy. Optimal 
target design customized for LiDAR data was developed based on simulation results. The target design 
includes the determination of the optimal target shape, target size and coating pattern as well as algorithms 
to accurately determine the target origins in LiDAR data. Based on the simulation results, targets were 
fabricated and an initial test flight was carried out to check the achievable improvement in the data 
accuracy using the designed targets. The test flight conditions, however, were less than ideal as snow cover 
made the identification and determination of the target positions in the dataset difficult. The test results 
showed that the use of the LiDAR-specific targets can significantly improve the accuracy of the final 
LiDAR product.  
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An investigation, based on simulation was carried out for circular shaped LIDAR ground 
control targets. Compared to the previous study to the previous simulations with square-
shaped target of different sizes, this simulation was limited to only one target size, 1.5 m 
radius circle. An additional assumption was that the target is leveled. As the sensor 
calibration was not addressed in the previous report, a short description of the boresight 
calibration is included. 
 
In order to use ground control targets in LIDAR data for calibration purposes or as an 
absolute reference to apply additional translation after the LIDAR strip adjustment, they 
need to be identified and modeled reliably in LIDAR data. Considering the target size and 
the characteristics of any error in the LIDAR data, the vertical shift of all the LIDAR points 
reflected from the target will be the same (of course, there are random errors too) – the 
horizontal target should not become tilted in the LIDAR data. The following is a short 
description of the effect of the different errors in LIDAR data from the perspective of sensor 
calibration. 
 
 
Influence of LIDAR boresight misalignment on accuracy of 3D object coordinates 
 
To show the effect of the boresight misalignment angles a coordinate system definition is needed, 
see Figure 1. All the latter formulas of the effects of the three misalignment angles are valid in this 
system. 

 
In order to analyze the effect of the different misalignment angles the following assumptions are 
made: the terrain is flat, scanning is performed in a vertical plane perpendicular to the flight 
direction and the flight line is horizontal (ω, ϕ=0), the κ  rotation angle can have any value. x,y,z 
denotes a local right-handed coordinate system centered at the laser beam origin and X, Y, Z  defines 
a right-handed object coordinate system, the origin of this system is at the nadir of the origin of the 
local coordinate system. The positive x-axis is in the flight direction. The misalignment errors dω, 
dϕ  and dκ  refer to the respective axes of the local coordinate system. κ  is the rotation from the X-
axis to the x-axis. β is the scan angle, it has positive values for scans to the left of the flying 
direction, else negative. h denotes the flying height. 
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Figure 1. Coordinate system definition 
 

Figure 2 illustrates the effect of the roll and pitch misalignment. 
 
 
 

 
 

(a)      (b) 
 

Figure 2. Effect of roll (a) and pitch (b) misalignment 
 

    
Roll misalignment causes a shift across the flying direction and a variable vertical shift. The surface 
becomes tilted, one side of the flying direction has vertical shift up, and the other side has vertical 
shift down. Under the flight line there is no vertical shift, farther from the flight line the shift is 
bigger. Roll misalignment has no effect in the flight direction. The formulas below show the 
coordinate errors caused by dω in the local and in the object coordinate systems.  

151



 

[ ]
[ ]

κ
κ

βωβωβ
ωββωβ

cos
sin

)tan(~)cos(/)cos(1
)sin(~)cos(/)sin()sin(

0

yY
yX

hdhz
dhdhy

x

∆=∆
∆−=∆

∆+−=∆
−+=∆

=∆

   

Table 1 contains the coordinate errors in the local coordinate system at different scan angles in the 
case of a 3’ roll misalignment at 1000m flying height. 
 

 +30° +20° +10° 0° -10° -20° -30° 
∆z [cm] 50 32 15 0 -15 -32 -50 
∆y [cm] 87 87 87 87 87 87 87 
∆x [cm] 0 0 0 0 0 0 0 

 
Table 1. Coordinate errors caused by roll misalignment 

 
Misalignment in pitch causes a constant shift along the flying direction; the vertical shift is 
negligibly small. dϕ  has no effect across the flying direction. The formulas below show the 
coordinate errors caused by pitch misalignment in the local and in the object coordinate systems. 
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Table 2 contains the coordinate errors in the local coordinate system at different scan angles in the 
case of a 3’ pitch misalignment at1000m flying height. 
 

 +30° +20° +10° 0° -10° -20° -30° 
∆x [cm] -87 -87 -87 -87 -87 -87 -87 
∆y,∆z 0 0 0 0 0 0 0 

 
Table 2. Coordinate errors caused by pitch misalignment 

 
Figure 3 illustrates the effect of the heading misalignment. 
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Figure 3. Effect of heading misalignment 
 

Misalignment in heading causes a variable shift along the flying direction. Under the flight line there 
is no shift, the farther the LIDAR point from the flight line is, the bigger the coordinate error is. The 
two sides of the flight line have opposite shifts. The shift across the flying direction is negligibly 
small. This misalignment has no effect on the vertical coordinates. The effect of any heading 
misalignment on the calculated coordinates is much less than the effect of a same magnitude roll or 
pitch misalignment. Therefore heading misalignment is the most difficult one to determine, during 
data processing some companies just assume that heading misalignment is zero. The formulas below 
show the coordinate errors caused by dκ  in the local and in the object coordinate system.  
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Table 3 contains the coordinate errors in the local coordinate system at different scan angles in the 
case of a +3’ heading misalignment at 1000m flying height. 
 

 +30° +20° +10° 0° -10° -20° -30° 
∆x [cm] -50 -32 -15 0 15 32 50 
∆y,∆z 0 0 0 0 0 0 0 

 
Table 3. Coordinate errors caused by heading misalignment 

 
Smiley error is the variable scan angle error. It causes the LIDAR strip tip up or down as we 
get farther from the nadir. It has similar effect to roll misalignment error except that this is 
symmetric to the flight line. Smiley error can be easily removed provided that the scanning 
system has been properly calibrated. 
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Finding vertical shifts in LIDAR data using circular targets 
 
Considering the above described characteristics of the different errors, to model the circular 
targets in LIDAR data and finally to determine vertical shifts, an obvious approach is to fit a 
horizontal plane to the identified target points. Since the height of the target is known, the 
difference between this height and the height of the fitted plane provides the vertical shift of 
the LIDAR data at the surrounding of the target. 
 
A simulation was carried out to analyze the achievable accuracy of the determined vertical 
shift in the case of different LIDAR point densities at different standard deviations of the 
horizontal and vertical coordinates of the measured LIDAR points.  To assess the attainable 
accuracy, we did plane fitting to simulated LIDAR points lying on the target surface and 
calculated the RMS of the height of the fitted plane. Figure 4 illustrates an example of 
LIDAR points lying on the target circle at three different point densities (25*25, 50*50 and 
75*75 cm). Table 4 shows the results at different point densities and standard deviations of 
the LIDAR points. This table also contains the maximum height difference between the 
target height and the height of the fitted plane to the LIDAR points lying on the target 
surface. 
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Sample LIDAR points of 0.25*0.25 m point density lying on the target circle  
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Sample LIDAR points of 0.50*0.50 m point density lying on the target circle  
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Sample LIDAR points of 0.75*0.75 m point density lying on the target circle  
 

Figure 4 LIDAR point patterns on circular target. 
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 σxy=0.25m, σz=0.1m σxy=0.15m, σz=0.1m σxy=0.15m, σz=0.05m 
Point 
density [m] 

RMS z  
[m] 

Max ∆z 
[m] 

RMS z 
[m] 

Max ∆z 
[m] 

RMS z 
[m] 

Max ∆z 
[m] 

0.25 0.009 0.031 0.008 0.030 0.004 0.015 
0.50 0.019 0.065 0.016 0.060 0.009 0.032 
0.75 0.038 0.112 0.021 0.080 0.012 0.041 

 
Table 4 Simulation results. 

 
The simulation results clearly indicate that the LIDAR point density plays a key role in 
achieving good accuracy through vertical shift compensation. The actual vertical accuracy 
of the LIDAR points has only a secondary effect on the results. Finally, the impact of the 
horizontal accuracy of the LIDAR points is almost negligible.  
 
Target design 
 
Besides determining vertical shift of LIDAR data, 3D targets can be used to determine 
planimetric offsets of LIDAR data strips for calibration purposes. The recent availability of 
intensity data, however, makes it possible using 2D targets as the various patterns in the 
intensity signal can be used to determine the horizontal shift components. For an initial 
investigation, we considered a simple ground control design of two concentric circles with 
different signal response coating; see Fig. 5 (1.5 m radius for the outer circle and 0.5m for 
the smaller inside one). In other words, the inner and outer circles have different signal 
response, therefore, points on the outer ring and on the inside circle could be differentiated 
based on their intensity values.  
 
 
 
 
 
 
 

Figure 5 Circular 2D target pattern with different reflective coating. 
 
Finding horizontal shifts in LIDAR data using the targets 
 
The achievable accuracy of the determined planimetric offsets mainly depends on the 
LIDAR point density with respect to the target size and of course, from the LIDAR point 
footprint size. To estimate planimetric shifts of LIDAR points, first a circle has to be fitted 
to the LIDAR points that lie on the target circle. These points can be found by their intensity 
value. Once the circle was fitted, the difference between the horizontal coordinates of the 
origin of the fitted circle and the known coordinates of the target provides the horizontal 
shift values of the LIDAR points near the target. 
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Our circle-fitting algorithm finds all the possible locations of the target circle in a grid, the 
algorithm itself is quite similar to the Hough-transform. The search is based on the known 
radiuses of the inner and outer circle and the LIDAR points lying on the target. If we look at 
a LIDAR point lying somewhere in the outer circle, we know that the origin of the circle is 
somewhere between the circle drawn around the LIDAR point as origin with the smaller 
radius and the circle drawn with the bigger radius. If we consider a second LIDAR point, the 
origin is somewhere in the intersection region of the two rings around the two LIDAR 
points, and so forth. An accumulator array is created with zero values, and point-by-point 
the value of the grid cells under the ring with the origin of the LIDAR point is increased by 
one. This is done for all points lying on the target. The cells with the highest value give all 
the possible positions of the target origin. The center of gravity of these cells is accepted as 
the origin of the circle. The half of the size of the area of cells with the highest value is the 
accuracy of the determined circle origin; therefore it gives an estimate for the accuracy of 
the determined horizontal shift of the LIDAR points. Figures 6, 7 and 8 illustrate the fitted 
circles and the accumulator array at 25*25, 50*50 and 75*75 cm LIDAR point density.     
 
 

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

3

 
LIDAR points (red points) and possible circle origins (green points) with all possible circles 

drawn in the case of 25*25 cm point density 
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a) LIDAR points (red points) and possible circle origins (green points) with circle 

drawn in the case of 25*25 cm point density and main circle points (purple points) 
 

 
b, Accumulator array in top view 
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c, Accumulator array in isometric view 
Figure 6. 
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a, LIDAR points (red points) and possible circle origins (green points) with circle drawn in 

the case of 50*50 cm point density and main circle points (purple points) 
 

 
b, Accumulator array in top view 
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c, Accumulator array in isometric view 

Figure 7. 
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a, LIDAR points (red points) and possible circle origins (green points) with circle drawn in 

the case of 75*75 cm point density and main circle points (purple points) 
 

 
b, Accumulator array in top view 
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c, Accumulator array in isometric view 

 
Figure 8. 

 
Table 5 shows the approximated accuracy of the determined horizontal position of the target 
circle for different point densities. The accuracy depends a lot on the actual LIDAR point 
distribution on the target circle and therefore the values shown in Table 5 are only 
representative for the above example. If there are more points near the edge of the circle, the 
accuracy is much better than in the case where there are not too many points near the edge. 
The design of the target (two concentric circles with different signal response) makes the 
determination of the horizontal position of the target much more accurate compared to the 
case of a homogenous target circle. Basically, the information that a LIDAR point falls on 
the inner or the outer circle provides additional constraint to the origin search algorithm.  
 

Point density [m] Accuracy of horizontal position 
of target circle 

0.25*0.25 few cm 
0.50*0.50 ~20-25 cm 
0.75*0.75 ~40-50 cm 

 
Table 5. LIDAR points-determined accuracy of the horizontal position of the target circle at 

different point densities 
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Geo-Referenced Digital Data Acquisition and Processing System Using LIDAR Technology 
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ABSTRACT 
 
Deployment of LiDAR systems has recently experienced enormous growth.  Improved performance as well 
as affordability has made LiDAR a primary tool for collecting a variety of high quality surface data in 
much shorter periods of time than previously was possible.  The introduction of return pulse intensity or the 
availability of complete waveform data has further enhanced the processing of LiDAR data in terms of 
better automation and better feature extraction performance. The potential of combining LiDAR data with 
simultaneously acquired digital imagery to further improve the terrain extraction process is investigated. A 
statistical model has been developed to combine surface points obtained from stereo DEM extraction with 
data directly acquired by LiDAR. The merging process is based on the error characteristics of the different 
surface data types. In addition, the method can deal with any other combination of source surface data.  

 
 

INTRODUCTION 
 
Digital elevation models (DEMs) are required by a wide variety of applications (Maune, 2001). In addition, 
emerging applications usually need DEMs with an increased level of detail and accuracy. Recent 
technological advancements have created revolutionary new techniques to acquire DEM data in large 
volumes, with excellent accuracy and at an affordable price. LiDAR has become the de facto leading 
source of high accuracy surface data at local scale; while IfSAR has a similar role at global scale to produce 
vast amounts of data quickly at low cost and good accuracy. The traditional DEM extraction method – 
photogrammetry using stereo image pairs – has been losing ground against the new techniques. Most 
importantly, LiDAR and IfSAR processing can be automated to a large extent, while despite solid 
developments in image matching, the traditional photogrammetric method is still labor intensive, especially 
for urban areas. 
 
Surface data created with old and new technologies have different and often complementary error 
characteristics. There are a number of papers comparing DEM characteristics obtained by different 
technologies (Mercer, 2001; Toth and Brzezinska, 2000). Recently, discussions have intensified on 
combining different datasets to arrive at a better representation of the surface. The idea behind fusing 
DEMs is simple: if surface data are available from different sources with different sampling rates, sampling 
pattern, different error characteristics and each method records different properties of the terrain better, the 
fusion of the different surfaces obviously can provide a more detailed, more accurate, improved model of 
the terrain. In an early fusion method for combining photogrammetric and IfSAR DEMs, the fused DEM is 
a weighted average of the different DEMs, where the weights are coming from the cross correlation values 
(Honicel, 1999). A method to fuse DEMs, which is based on the individual error characteristics of the 
different surface points, is described in this paper. LiDAR data with digital imagery are used to obtain 
initial test results for the proposed method.  
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CONCEPT OF THE METHOD 
 
Most of the papers dealing with fusion of different surface datasets consider the task of merging two 
different DEMs as calculating some kind of weighted average of the DEMs. In contrast, our approach is 
different as the concept of the proposed method is based on the fact that all points from the different 
sources are considered together with their individual error characteristics (in contrast to being handled as 
two distinct datasets). The surface points are characterized by their error ellipsoids, not only the vertical 
coordinate errors but also the horizontal terms are considered. For example, this is especially important in 
the case of LiDAR data with larger footprint sizes.  
 
The problem of fusing different datasets can be described as finding an optimal reconstruction of the z(x,y) 
surface, which is sampled at the locations of the given points from the different datasets. As with all the 
measurements, the samples are not error free and the measured points can be characterized by their error 
ellipsoids, which are determined by the standard deviations of the three coordinates and the correlation 
between the coordinates. Hence, an optimal surface is sought that goes through all the error ellipsoids and 
satisfies the condition that the RMS, weighted by the coordinate accuracy terms, is minimal (Figure 1). 
 

 
 

Figure 1. Problem description. 
 
Obviously, this formulation of the above problem is ill conditioned. The suggested solution to make the 
surface-fitting problem well conditioned is to convert the three-dimensional uncertainties of the measured 
points into a single vertical term. In other words, the measured points are characterized with only one, 
vertical accuracy term. In this way the original ill conditioned surface fitting problem becomes a well-
conditioned least squares adjustment problem, where the weight matrix is determined by the converted 
vertical variances. For instance, in the case of horizontal flat terrain the horizontal coordinate error does not 
cause additional error in the vertical coordinate. But if the terrain is sloped, a horizontal coordinate error 
obviously introduces an additional vertical error. This vertical error can be calculated if the surface gradient 
at the measured points is known. Figure 2 illustrates the error ellipse of a measured point assuming the 
coordinates are uncorrelated. 
 

 
 

Figure 2. Converting the 3D variance into a single vertical variance. 
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Based on the three-dimensional variances of the coordinates and the surface gradients in x and y directions 
at the measured point, the converted vertical variance can be derived by error propagation: 

222222' YYXXZZ gg σσσσ ++=  
where 

222 ,, ZYX σσσ are the three-dimensional variances 
2'Zσ is the converted vertical variance 

YX gg ,  are the surface gradients in the X and Y directions 
 
For simplicity, it was assumed that the X, Y, and Z coordinates are uncorrelated; however, if it is not the 
case, the correlation between the coordinates should be considered, and consequently the converted vertical 
variance can be derived similarly by error propagation.  
 
 
IMPLEMENTATION OF THE METHOD 
 
Figure 3 illustrates the implementation of the proposed method for fusing different datasets. 

 

 
 

Figure 3. Implementation of the proposed fusion algorithm. 
 
Initially there are n points from the two or more different datasets with their known error ellipsoids. Since 
surface fitting to n error ellipsoids is an ill conditioned problem, as described above first the three-
dimensional variance has to be converted into a single one-dimensional vertical variance term based on the 
surface gradients. Obviously, the true surface normals cannot be determined since the true surface is not 
known and consequently the surface gradient must be approximated. Once the approximated surface 
gradients are found, the single term vertical variance is calculated for each point. Then using these values, 

Input points from different datasets ),,,,,(0
znynxnnnnn ZYXS σσσ=  

Fit surface to points by least squares adjustment using the weight matrix 

Approximate surface normal for each point 

Compute single term 'zσ  for each point 

Using 'zσ  determine weight matrix 

Check surface update 

Final surface 
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the weight matrix for the least squares adjustment can be constructed. Since the surface gradients are not 
known (they are approximated), the whole process is iterative. Once a surface is fitted by a least squares 
adjustment, the update with respect to the previous surface is checked. If it is above a specified threshold, 
the gradients are approximated again and the process starts over until the surface update goes below a 
predefined threshold. Usually only a few iterations are needed (depending on the threshold), as the method 
is likely to eliminate the outliers during the first iteration. Initially, the surface gradient at any measured 
point is calculated using the surrounding measured points. Thus, the calculated gradients of outlier points 
will be large, which causes the calculated vertical variance to be very large. For instance, points with a 
vertical variance above a predefined threshold can be either eliminated before surface fitting or they will 
have small weights and become insignificant in the adjustment. 
 
There is no restriction on what kind of surface modeling function can be used. The optimal technique can 
be chosen solely based on the terrain characteristics. For the initial tests, Fourier series-based surface 
modeling extended with polynomial terms was used (Csanyi et al., 2003). The advantage of this proposed 
surface modeling method is that the polynomial components describe the surface trend well while the 
Fourier series models the local changes in the surface. The size of the area that can be efficiently modeled 
by fitting a surface depends on the terrain characteristics. In the case of smooth, rolling terrain, the area can 
be larger, while quickly changing terrain must be restricted to small areas. To determine the fused DEM for 
larger areas, the area can be segmented into smaller patches that can be individually modeled by surface 
fitting and then the patches can be merged together after fusion. 
 
 
EXPERIMENTAL RESULTS 
 
The selected test area is a small, 10 m * 15 m area of the Madison County, Ohio test site, which has been 
flown regularly and therefore various datasets as well as excellent ground truth are available. Figure 4a 
shows the test area, which is a part of a 4K by 4K airborne panchromatic digital image and Figure 4b 
depicts the elevation ground truth data.  
 

a) b) 
Figure 4. Test area and ground truth. 

 
LiDAR data acquired with digital imagery were used to test the proposed fusion algorithm. The LiDAR 
point density was about 0.4 point/m², the images were taken with a 4K by 4K digital camera from a 1250 m 
flying height (Toth, 1997). Figure 5 illustrates the LiDAR points and the extracted stereo points over the 
selected area. The stereo points were obtained in a digital photogrammetric workstation environment using 
StereoPlotter from Autometric; no manual editing was done on the data. 
 
Since the proposed fusion algorithm is based on the error characteristics of the measured surface points, the 
error characteristics should be considered at great care. The horizontal standard deviation of the LiDAR 
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points was determined based on their footprint size, 0.5 m, while for the vertical standard deviation, the 
usual 0.15 m was considered. No scan-angle correction was applied, as the surface area was rather small 
with respect to the swath of the LiDAR sensor. For the stereo points, the analysis of the differences with 
respect to the ground truth of the area provided the error terms; 0.2 m and 0.4 m, horizontal and vertical 
error terms, respectively. These three-dimensional standard deviations were then converted to one-
dimensional, vertical values based on the surface gradient at the measured points according to the above 
described process. 
 

a) 

 
  

b) 

 
 

Figure 5. LiDAR and stereo points over the test area. 
 

First, the surface was only modeled based on the measured LiDAR points. Then to assess the performance 
of the proposed fusion algorithm, it was performed on the LiDAR and stereo points. In both cases the 
surface was modeled by the above-mentioned proposed method using Fourier series with polynomial 
extensions, see details in (Csanyi et al., 2003). The optimal order of the polynomial and the number of 
harmonics for the Fourier series were chosen based on the average point densities in the X and Y direction 
and the surface characteristics.  
 
Table 1 shows the main statistics of the surface model based on only the LiDAR points and the surface 
model after fusion. As a measure of the closeness of the surface model to the ground truth, the maximum 
difference and the RMS values were calculated from the differences between the fitted surface and the 
ground truth at the grid points (the ground truth was available in grid format and these differences were 
calculated at grid points). The results clearly show that the fused surface data models the true surface much 
better. Both the RMS and the maximum difference from the ground truth decreased significantly after 
fusion. The limited initial test has shown a good performance of the proposed fusion method over a small 
area. 
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Table 1. Statistics before and after fusion. 
 
 

CONCLUSIONS 
 
An algorithm to combine surface datasets from different sources to achieve an improved accuracy DEM 
has been developed. The concept is that the points from different sources are individually considered 
together with their error characteristics and an optimal fitting surface for the points is sought. Since this 
problem is ill conditioned, the conversion of the three-dimensional variance into a single vertical variance 
has been proposed to make the problem a well conditioned least squares adjustment problem. The 
derivation of the combined vertical variance is based on the availability of the surface gradients. As the 
gradients are not known, but approximated, the solution is iterative. The test results are promising, clearly 
showing a good performance of the proposed algorithm. The resulting surface model improves after data 
fusion; both the RMS and the maximum difference from the ground truth data have decreased. The 
algorithm works with any combination of datasets. The main question of the method is what surface 
modeling function to choose. In the initial tests, the Fourier series with polynomial extension was selected.  
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Abstract – The deployment of LIDAR systems has recently 
experienced enormous growth.  Improved performance as well 
as affordability have made LIDAR a primary tool for 
collecting a variety of high quality surface data in much 
shorter periods of time than was previously possible.  In 
addition, some features unique to LIDAR, such as the 
capability to separate vegetation from the ground, have 
opened up new application areas.  As this technology has 
progressed from scientific applications to everyday map 
production, more and more data provide feedback on how to 
improve the surface extraction process and how to further 
extend application possibilities.  Massive early production 
experiences revealed the need for some image coverage, 
especially for concurrently acquired imagery.  The main 
purpose of the images is visualization; however, the 
availability of such imagery may play a further role in LIDAR 
data preprocessing and in the overall surface reconstruction 
process.  The fusion of the two quite different measurements 
(range vs. reflectance image) is based mainly on the different 
sampling patterns and information content.  The purpose of 
this paper is to present an assessment of the potential for 
combining LIDAR data with high-resolution, simultaneously 
acquired, direct-digital imagery to achieve higher quality 
results. The application potential is enormous for LIDAR and 
image fusion for medium or higher flying heights where the 
spot density may become rather sparse. 
 

I. INTRODUCTION 
 
Light Detection and Ranging (LIDAR) sensors have shown 
remarkable developments over recent years, achieving both 
cost-effectiveness and reliability at the same time. They 
currently represent a new and independent technology for a 
highly automated generation of digital surface models 
(DSM) and digital elevation models (DEM).  However, 
there are a few inherent shortcomings of the LIDAR 
technology, such as the lack of correspondence to objects, 
the lack of redundancy in the measurements, strong 
dependency on material features, and missing visual 
coverage.  Recently, rapid digital camera developments 
have reached a level of performance whereby such systems 
can be integrated into airborne LIDAR systems.  
Introduction of direct digital imagery into the LIDAR 
system has two primary benefits: 1) it can improve the 
surface extraction process, and 2) it provides the necessary 
visual coverage of the area.  Both processes can be 
sufficiently automated, promising a near real-time mapping 
performance.   

II.  IMAGING SENSORS 
 
Recently, LIDAR systems have established themselves as 
the strongest contenders for a highly automated generation 
of digital elevation and surface models.  Operational 
scanning systems easily provide a large number of 
elevation spots with excellent vertical accuracy (depending 
primarily upon the quality of the associated Global 
Positioning System/Inertial Navigation System (GPS/INS) 
data), and thus successfully compete with, thus far, mostly 
stereo image-based surface extraction techniques.  An 
additional feature that makes laser systems even more 
attractive is the fact that they can deliver multiple echoes 
from one laser pulse – for example, first and last return – 
which allows the separation of terrain or man-made objects 
from vegetation, as the laser beam can penetrate the 
vegetation foliage, but not the terrain or solid objects.  
Obviously, this technological transition is made possible by 
the high quality of contemporary GPS/INS systems, which 
offer positioning accuracy in the range of 5-20 cm, a figure 
compatible with the range quality offered by LIDAR 
systems. An excellent primer for the basic principles of 
LIDAR systems is provided by Baltsavias (1999). 
Comparison between photogrammetry and LIDAR 
techniques is addressed by Schenk (1999) and by Baltsavias 
(1999).  Advanced surface generation methods are 
reviewed by Kraus (2001). Wehr and Lohr (1999) discuss 
system structures and specifications. Maas and Vosselman 
(1999) and Haala and Brenner (1999) can be a good 
starting point for the subject of building extraction, while 
forestry mapping is discussed by Kraus (1998).  A 
comprehensive review of the commercial developments is 
available from Flood (2001). 
 
The introduction of digital camera systems into airborne 
surveying is a less noticeable progression than the 
proliferation of LIDAR systems.  Nonetheless, high-
resolution digital sensors, based on Charge-Coupled 
Devices (CCD), are rapidly approaching the resolution and 
performance level required in aerial mapping.  A sure sign 
of these changes is that both major large-format analog 
camera manufacturers are already heavily involved in 
digital aerial camera developments and have recently 
introduced the first generation of their high-performance 
digital aerial mapping cameras. Commercially available 
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digital frame cameras in the 4K by 4K range have already 
been used in airborne surveying, and experimental systems 
are tested with 10K by 5K and 9K by 9K sensors (Thom 
and Souchon 1999, Toth 1999, Bruce 1998). The ground 
coverage offered by these sensors is still modest compared 
to that of large -format analog cameras used in airborne 
mapping; nevertheless, these digital cameras can efficiently 
provide simultaneous visual information for LIDAR data at 
sufficient ground resolution and coverage. Thus, combining 
LIDAR with these digital imaging sensors provides an 
excellent and novel solution to simultaneously acquiring 
surface data along with visual coverage and consequently to 
producing orthophotos. Of equal importance, the digital 
images can bring in much-needed redundancy to LIDAR 
data and consequently can offer the potential to improve the 
quality of the LIDAR-derived surface data.  
 

III. IMAGE FUSION 
 
Combining various image sensory data to improve the 
feature extraction process is a general trend in mapping. 
Because of the explicit nature of the LIDAR data, however, 
most LIDAR processing methods have not involved any 
additional source of information until recently. To change 
this trend, LIDAR data interpreted as image intensity, 
combined with multi-spectral imagery, have been studied to 
support the classification process in remote sensing. This 
research goes a step further as our objective is to achieve 
the fusion of the two data sets in terms of optimizing the 
geometrical properties of the extracted surface. 
 
A. Comparison of DEM extraction techniques 
 
Large-format aerial imagery was the predominant source of 
DEM production before the introduction of LIDAR, which 
has now been emerging as a market leader at an 
unprecedented rate. Comparing the two techniques reveals 
the fundamental differences in concept and performance 
characteristics.  
 
Producing DSMs and DEMs, and especially surveying 
densely built urban areas, are in high demand and yet these 
are some of the most difficult mapping tasks to perform. 
This is primarily due to the large number of man-made 
objects with lots of vertical surfaces, occlusions, shadows, 
moving objects, etc. Probably the surface discontinuities, 
generally called break lines, represent the most difficult 
problem, and from a strictly theoretical point of view, they 
would require a diminishingly small sampling distance, 
posing a challenge for both techniques but in a somewhat 
different way. Although the LIDAR point density can be 
increased almost infinitely, the real limit is the cost. By 
contrast, increasing the spatial sampling rate of the imagery 
(by reducing the pixel size) can be accomplished without 
any major cost increase; however, the processing of the 
images becomes overly complex. 
 

Automated surface extraction from stereo imagery has been 
intensely researched and numerous implementations of 
various concepts have been commercially available for use 
in production for many years. In general, the performance 
diminishes at larger scale. In contrast, LIDAR data 
processing is rather new and is usually limited to simple 
pre-processing of raw input data, then to vegetation 
removal or bald earth filtering, and in some cases to feature 
extraction such as road and building extraction. Because of 
the explicit range measurements, LIDAR data processing is 
substantially less complicated than the automated surface 
extraction from stereo images. Nevertheless, expertise in 
image matching is a significant asset that should be invoked 
in any future attempts to integrate these two sensory data 
types. Table I summarizes the main differences between the 
stereo image based photogrammetric and LIDAR 
techniques. 
 

Table I 
 

 Photogrammetry LIDAR 
Data Acquisition   
  Flying height (H) [m] < 6,000 < 2,000 
  Swath [degrees] < 110 < 20 
  Sampling/Coverage Continuous Sparse/Irregular 
  Footprint (GSD) [m] Pixel size x Scale 1 mrad x H 
Surface Extraction Process   
  Redundancy 2 x n – 3 0 
  Accuracy   
    Planimetry [m] < GSD 0.1 + -0.12 x H 
    Elevation [m] ~ H / 10,000 ~ 0.1 
  Automation potential  Medium  High 
  Automation complexity Medium/High Low 

 
To illustrate the differences in surfaces obtained by 
automated surface extraction and from LIDAR data, Fig. 1 
shows DSMs over a test area. 

 
Fig. 1. Photogrammetrically derived DSM. 

 
The stereo image-created elevation points exhibit the 
typical smoothed out pattern with smeared surface 
discontinuities. The LIDAR data show an excellent match 
with the ground truth for flat areas, showing at the same 
time buildings and other man-made objects not present in 
the topographic surface. The surface comparison clearly 
shows that the photogrammetrically derived DSM lacks 
high-frequency spatial components, which is primary due to 
the low-frequency filtering nature of the automated image 
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matching process. In fact, one of the principal problems in 
image matching is finding good approximate locations. 
Once they are found, however, the refinement of the 
matched locations is less problematic in most of the cases. 
In a combined approach, the LIDAR spots can serve as 
initial matched locations (seed points of extremely high 
quality) and then additional matching points can be 
searched around the LIDAR locations to densify the surface 
points. Furthermore, various processes can be built into this 
concept, such as inferring from certain image patterns to an 
object hypothesis then applying it to clean LIDAR data or 
vice versa.  
 
 
 
 
 

Fig. 2. LIDAR derived DSM. 
 
B. Sensing characteristics 
 
The raw LIDAR data represent ranges with respect to the 
data acquisition platform (aircraft). After the reconstruction 
of the aircraft motion and application of some mapping 
frame, the elevation spots are available as a function of the 
horizontal location, forming 3D point clusters or lines with 
the point density depending on flying height and speed, 
surface slope, sampling frequency, the laser’s field of view, 
etc. The fact that laser systems provide 3D coordinates can 
be considered, in some sense, as their limitation, as 
virtually no object information is provided. In essence, laser 
scanning is not capable of directly pointing to any particular 
object, and the resulting coordinates refer to the footprints 
of the laser beam. From a radiometric point of view, the 
LIDAR system is a narrow-band active sensor, providing a 
spectral signature of the imaged objects (this capacity is 
hardly used now as LIDAR systems typically don’t deal 
with reflectance signal intensity). 
 
The parameters of the images acquired by airborne frame 
digital cameras are rather well known. Obviously, the 
sensor model is based on the very same central perspective 
projection used for large-format aerial cameras. The only 
notable difference with analog film comes from the 
radiometric behavior. CCD sensors respond to incoming 
light in the 0.4-1.1 micron range. Depending on the optical 
filter used, CCD images may cover only the visual part of 
the spectrum or some subpart of it. In addition, CCD 
sensors exhibit a linear characteristic and provide a much a 
finer intensity resolution compared to analog film. 
 

C. Sampling pattern 
 
The footprint of the laser beam and the ground pixel size of 
the 4K by 4K-category digital camera systems in a typical 
installation are very comparable as both systems work with 
similar FOV’s. Fig. 3 depicts an image patch showing the 
back-projected LIDAR spots. As illustrated, the sampling 
patterns are independent and irregular. Of course, the 
irregularity depends primarily on surface undulations and to 
a lesser extent on the sensor orientation. The ratio between 
the LIDAR and image samples is about 1:70. Since the 
LIDAR system may receive multiple returns, the effective 
sampling size can be smaller. This occurs in rare situations, 
for instance, when the laser beam hits a break line. A 
completely missing LIDAR spot is another possible 
anomaly; for example, due to surface slant or due to 
specific materials such as tar (which has no response in the 
narrow LIDAR spectral band) it is possible that no laser 
return will be detected at all. 
 

 
Fig. 3. LIDAR points overlaid in simultaneously acquired 

digital image. 
 
To assess the impact of the different sampling rates of the 
LIDAR and imaging sensors with regard to the surface 
extraction problem, two approaches can be considered. The 
first is if the sampling rate of the LIDAR system (typically 
defined by the cross track direction) is adequate to properly 
describe the surface. This is usually the case for rural areas 
with modest surface undulations. In these situations, the use 
of image data to support the surface extraction process is 
rather limited and is mainly restricted to filling in areas 
with missing LIDAR spots. Except for these rare cases, the 
primary purpose of the simultaneously acquired image data 
is visual coverage, the ortho-rectified backdrop of the 
surface. The second and more important case is when the 
sampling rate of the LIDAR system is not adequate for the 
required surface representation with respect to the 
requirements of the mapping objective (Toth and 
Brzezinska, 2000; and Toth et. al. 2001). 
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D. Concept 
 
To briefly illustrate the concept of fusing simultaneously 
acquired LIDAR data and digital imagery, a simple test has 
been done on a few points along a laser scanline marked by 
rectangles in Fig 3. As there was no ground truth available 
for the area, a road surface area was selected. After back-
projecting the LIDAR points into a stereo model, image 
matching was performed to assess what surface elevation 
can be computed from the adjusted locations. In a totally 
ideal situation, matching would result in a zero shift 
between two image patches. As shown in Fig. 4, there is a 
small but noticeable difference between the original LIDAR 
height values and the photogrammetrically derived 
elevations at the LIDAR locations. Analyzing the variations 
along a shorter segment of the road, the results show an 
approximately 8.5 cm variance for the LIDAR and 6.4 cm 
for the stereo points. This demonstrates that the LIDAR 
point coordinates can be improved by stereo image-based 
photogrammtery, provided the image resolution and 
orientation are of high quality. Obviously, the impact on the 
horizontal component is more significant as the difference 
between accuracy terms is higher (LIDAR data is rather 
weak in planimetry). 
 

 
Fig. 4. Elevation profile comparison. 

 
V. CONCLUSION 

 
In this paper, the feasibility of combining high-performance 
LIDAR data with simultaneously captured digital images to 
improve the surface extraction process was examined.  The 
parameters used in the example mimic those in current 
state-of-the-art LIDAR technology and commercially 
available digital camera systems.  The investigation was 
limited to the conceptual level and addressed only one 
specific aspect of a rather complex topic–the question of 
surface sampling.  Although the discussion was incomplete, 
the example was intended to clearly demonstrate the 
potential of fusing LIDAR data with simultaneously 
acquired imagery to improve the surface extraction process. 
 
The already existing difference in the sampling rate 
between the image resolution on the ground provided 

simultaneously by digital cameras and the LIDAR data 
provides the potential to improve the surface extraction 
process.  Currently, the rate is about 70 image pixels for 
every LIDAR spot.  Since image matching on a pixel-to-
pixel level is not feasible, by assuming small clusters of 
pixels, a densification factor of 5 can be achieved easily 
even through moderate calculations (the optimal surface 
point spacing vs. pixel size question itself is a topic of high 
interest).  Since the pulse rate of current LIDAR systems 
cannot be increased unlimitedly due to the travel time of the 
pulse, while the digital camera resolution is likely to grow, 
it is anticipated, therefore, that the densification factor will 
continue to improve even further.  This may change with 
the introduction of focal plane array LIDAR sensors. 
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Geo-Referenced Digital Data Acquisition and Processing System Using LIDAR Technology 

 

 

 
 

APPENDIX G 
 

Software Developments 
 
 

1. LIFT, Target Processing Software, User’s Manual. 

2. Microsoft VC++ source code (only electronic version) 
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Target Processing Software 

 
Users’ Manual 

June 2005 
 
 
1. Software Overview 

 
The purpose of the software is to automatically find and identify the LiDAR targets in the 
LiDAR strips and correct the errors in the LiDAR data based on the target control 
coordinates. 

 
 

1.1. Main menu 
 

 
 
 
1.2. Menu points in LiDAR Control 
 

 
• File Input/Output 
• Target Selection 
• Target Identification 
• Strip Transformation 
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1.3. Data processing steps 
 

1. Create input LiDAR file (LiDAR Control /  File Input/Output) 
2. Create raw LiDAR target file (LiDAR Control / Target Selection) 
3. Determine LiDAR target coordinates (LiDAR Control / Target Identification) 
4. Select optimal transformation for the LiDAR strip (LiDAR Control / Strip 

Transformation) 
5. Transform the LiDAR strip using the selected transformation (LiDAR Control / 

Strip Transformation) 
 
These steps have to be performed for each LiDAR strip separately. 
 
 

2. Description of target processing steps 
 

2.1. File Input/Output 
 

 
 
 
Objective: 
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Read LiDAR files in LAS format or any user defined ASCII file format and create 
output ASCII LiDAR file in user defined format. 
 
 
File Specification Group Box: 
 
Input LiDAR File input LAS file or ASCII LiDAR file
Output LiDAR File output LiDAR file name 

 
 
Format Specification / Input Format Group Box: 
 

Check 
boxes 

Input format has to be specified only if the input file is an ASCII LiDAR 
file, if the input file is an LAS file, these fields are disabled. The LiDAR file 
can contain GPS Time (T), X, Y, Z coordinates and Intensity values (I). The 
values can appear in any order, and the order has to be specified. The 
default order is 1: Time, 2: X, 3: Y, 4: Z, 5: I. If there are more returns in a 
line they will be read automatically based on the format specification. 
 

Separator Select how the values in the input files are separated. 
Options: 
-Space 
-Comma 
-ArcView Format (1, X, Y, Z) 
 

X Offset Define the value to be subtracted from X coordinates (the units are the same 
as for the X coordinates). Default value is 0, but sometimes different value 
could be necessary. 
 

Y Offset Define the value to be subtracted from Y coordinates (the units are the same 
as for the Y coordinates). Default value is 0, but sometimes different value 
could be necessary. 
 

File Type Select the input file type. 
Options: 
-Generic ASCII 
-LAS format 

 
 
 
Format Specification / Output Format Group Box: 
 

Check 
boxes 

Specify output file format. Default is the same as the default input file 
format: 1: Time, 2: X, 3: Y, 4: Z, 5: I. The example setting above shows the 
output order: X Y I. If the user wants to create input file for the LiDAR 
target selection step, the output format has to be: X, Y, Z, I !!! 
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Returns 
 

Select LiDAR returns to be written to the output file. Up to 5 returns can be 
selected. The software automatically recognizes how many returns are in 
the input file, and if the selected return number for output is larger than 
that, the software neglects those user return selections. 
 

Separator Specify how the values in the output files to be separated. 
Options: 
-Space 
-Comma 
-ArcView Format (1, X, Y, Z) 
 

Select 
Points 

Define which points to be written to the output file. 
Options: 
-All: write out every point in the input file 
-Every Nth point: write out every Nth point of the input LiDAR file 
If this option is selected, N has to be specified in the text field next to the 
option. 
 

Format Specify that the LiDAR returns for one GPS time tag are written to 
separate lines in the output file or in one line. 
Options: 
-Separate Lines  
-One Line 
Necessary to select only if more than one LiDAR return is written to the 
output file.  

 
 
 

Log File Has no functionality at this point 
 

Processing 
Status 
 

Show the number of lines of the input file that have been processed, 
and indicate the end of processing. 
 

Process  Read and write out specified ASCII LiDAR file or LAS file to 
specified output format 
 

OK Save window settings 
 

Cancel Quit 
 

 
 

  2.2. Target Selection 
 

179



 
 
 

Objective: 
Select target areas with defined window size from the input LiDAR strip for further 
processing. The output is a raw target file containing all the targets (windows with 
defined size around targets) from the target list found in the LiDAR strip. 
 
 
Input Files Group Box: 
 

LiDAR File LiDAR file is required to be in X Y Z I format and must contain 
one return. 
 

Target 
Coordinate File 

This file is the GPS measured target coordinate list in format: ID X 
Y Z. The target ID has to be integer! 
 

 
 
Output File Group Box: 
 

LiDAR Raw 
Target File 

The output file, contains the list of LiDAR points in the target 
areas, the areas are identified with the target ID. The format is: ID 
X Y Z I 
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Parameters Group Box: 
 

Target Search 
Window Size 

Define the rectangular window size for target area selection. 
Default is 3m for the 2m target circle radius. Selected size depends 
on the maximum expected horizontal error in the LiDAR strips. 

 
 
 

Log File Has no functionality at this point 
 

Processing 
Status 

Show the number of lines of the input file that have been processed, and 
indicate problem with opening the input files and the end of processing. 
 

Process Select target areas from input LiDAR file 
 

OK Save window settings 
 

Cancel Quit 
 
 
After selecting the LiDAR points at the target areas, the next step is to identify the 
target points and determine the target circle origin coordinates. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.3. Target Identification 
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Objective: 
Select target points (LiDAR points fallen on the targets) from the raw LiDAR target file 
based on intensity and elevation and determine target center coordinates in the LiDAR 
data together with their standard deviation and diagnostic parameters. 
 
 
Input File Group Box: 
 
LiDAR Raw Target File This file is the output file of the target selection step.  

 
 
Output File Group Box: 
 
LiDAR Target File The determined target coordinates with standard deviation 

values and diagnostic parameters will be written to this file.  
 

 
 

Output File format: 
 

ID X Y Z Std X Std Y Std Z #inner #outer X size Y size flag
 
where 

ID Target ID 
X X coordinate of target circle origin 
Y Y coordinate of target circle origin 
Z Z coordinate of target circle origin 
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Std X Standard deviation of determined X position 
Std Y Standard deviation of determined Y position 
Std Z Standard deviation of determined Z position 
#inner Number of LiDAR points on inner target circle 
#outer Number of LiDAR points on outer target ring 
X size Size in X direction of patch of all possible  

circle origin locations 
Y size Size in Y direction of patch of all possible  

circle origin locations 
flag Indicates if the determined target position was  

found to be valid or not (1/0) 
 
The identified target points are subject to various acceptance tests and the 
determined target is accepted (gets flag 1) only if it passes each test. 
 
 

Log File Show determined target positions together with standard deviations 
and diagnostic parameters.   
 

Processing 
Status 

Indicate problems with opening the input file and the end of 
processing. 
 

Process Determine target coordinates 
 

OK Save window settings 
 

Cancel Quit 
 

 
Once the targets are identified in the LiDAR strip and their coordinates are determined, 
the next step is to find the optimal transformation for the strip based on the targets and 
transform the strip. 
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2.4. Strip Transformation 
 

 
 
 

Objective: 
Select optimal transformation for the LiDAR strip and transform the strip using the 
selected transformation.  
 
 
2.4.1. Select optimal transformation for the LiDAR strip: 
 
Compute Transformation Parameters Group Box: 
 

Target 
Coordinate 
File 

File containing the GPS measured target circle origin coordinates. The 
file format is: ID X Y Z 
The target ID must be integer !!! 
 

LiDAR Target 
File 

This file is the output of the target identification step. It contains the 
determined target coordinates and their standard deviation for the 
target IDs together with some diagnostic parameters. 
 

Adjust Button Opens Adjustment Window 
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Adjustment Window: 
 

 
 
 

Measurements Group Box: 
 

The Measurement Group Box lists all the targets in the strip with target ID, X, Y, Z 
coordinates and X, Y, Z residuals after applying a user defined transformation on the 
targets. Initially the coordinate errors at the target locations (difference between target 
coordinates in the LiDAR data and GPS measured target coordinates) are displayed. The 
window also shows the Status of the targets, namely, if they are part of the transformation 
coefficient calculation (M) or withdrawn (W) from the adjustment, or were not accepted 
by the target identification algorithm (has flag 0) as valid target coordinates (U). To 
withdraw a target from the transformation calculation, select the target by clicking on it 
and click on the Withdraw button. Pushing the Withdraw button twice will result in that 
the target will again be part of the adjustment. 
 
Point ID 
 

is the first column in the list box that displays the point 
names. 
 

Status 
 

is the second column in the list box that displays the status of 
the targets. The status includes U (unmeasured), M 
(measured), and W (withdrawn). A withdrawn target is not 
used in the computation of the transformation coefficients. 
However, its coordinates are transformed with the calculated 
coefficients and compared with the target control 
coordinates. The differences are then displayed in the 
respective residuals columns. 
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GroundX 
 

is the third column in the list box that displays the 
determined X-coordinate of the LiDAR targets in the LiDAR 
data.  
 

GroundY is the fourth column in the list box that displays the 
determined Y-coordinate of the LiDAR targets in the LiDAR 
data.  
  

GroundZ is the fifth column in the list box that displays the determined 
Z-coordinate of the LiDAR targets in the LiDAR data.  
 

ResX is the sixth column in the list box that displays the X-
coordinate residual for the targets after the strip 
transformation.  
 

ResY is the seventh column in the list box that displays the Y- 
coordinate residual for the targets after the strip 
transformation. 
 

ResZ is the eighth column in the list box that displays the Z- 
coordinate residual for the targets after the strip 
transformation. 
 

Ctrl is the last column in the list box that displays (XYZ) for 
targets that take part in the computation of transformation 
coefficients, and (***) for targets that are either not accepted 
as reliable targets (has flag 0) or are withdrawn from the 
adjustment.  
 

Points is a display-only text box that displays the number of targets. 
 

Ground XY Inactive for this version of the software 
 

Units Inactive for this version of the software 
 

ResX, Y, Z are three display-only text boxes that display the RMS (root 
mean square) residuals respectively in X, Y, Z coordinates. 
These values are computed from the individual residuals of 
all targets that are not U (unmeasured). 
 

ResXY Inactive for this version of the software 
 

Tolerances Inactive for this version of the software 
 

 
 
Statistics Group Box: 
 
Nx Number of X controls, for this version equals to the number of 
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targets  
 

Ny Number of Y controls, for this version equals to the number of 
targets  
 

Nz Number of X controls, for this version equals to the number of 
targets  
 

Ax Number of active X controls, for this version equals to the 
number of targets that were measured and not withdrawn 
 

Ay Number of active Y controls, for this version equals to the 
number of targets that were measured and not withdrawn 
 

Az Number of active Z controls, for this version equals to the 
number of targets that were measured and not withdrawn 
 

 
 
Adjustment Results Group Box: 
 
Shows the calculated transformation coefficients; in case of 3D similarity transformation 
(Scale, X0, Y0, Z0, O (omega in degrees), P (phi in degrees), K (kappa in degrees)), for 
vertical shift, only naturally Z0 is shown, and for 3D affine transformation no coefficients 
are displayed. 
 
X0 Shift in X direction 

 
Y0 Shift in Y direction 

 
Z0 Shift in Z direction 

 
Scale Scale factor 

 
O Rotation angle along X-axis (omega) 

 
P Rotation angle along Y-axis (phi) 

 
K Rotation angle along Z-axis (kappa) 

 
 
 
Adjustment Control Group Box: 

 
Withdraw To withdraw a target from the transformation calculation. To 

withdraw a target from the transformation coefficient 
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calculation, select the target by clicking on it and click on the 
Withdraw button. Pushing the Withdraw button twice will 
result in that the target will again be part of the adjustment. 
 

Adjustment Type Three different transformation types can be applied: 
• Vertical Shift 
One parameter transformation, minimum one target is 
required. 
• 3D Similarity 
Seven parameter 3-dimensional similarity transformation, 
minimum 3 targets are required. 
• 3D Affine 
Twelve parameter 3-dimensional affine transformation, 
minimum 4 targets are required. 
• None 
No transformation is applied on the targets; the original errors 
at the target locations are displayed. 

 
 
 

By changing the selected transformation or withdrawing a target from the adjustment, the 
transformation coefficients are automatically recalculated and the residuals at the target 
locations are refreshed. The actual transformation parameters are saved automatically to a 
parameter file. There are three separate parameter files for the three types of 
transformations. If the same transformation type is calculated many times with different 
targets included, the parameter file will contain the transformation coefficients from the 
last transformation.  

 
OK Saves the actual window settings and quits 
Cancel Quits the transformation window 

 
 

After selecting the optimal transformation for the LiDAR strip, the next step is to 
transform the whole LiDAR strip based on the selected transformation. 

 
 

2.4.2. Transform LiDAR strip 
 
LiDAR Strip Transformation Group Box (of LiDAR Strip Transformation dialog 
box): 
 
Input LiDAR File 
 

The input LiDAR file to be transformed. It has to be in X Y Z 
format. 
 

Output LiDAR File 
 

The output file that will contain the transformed LiDAR 
strip. 
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Output Format 
 

Define the output file format.  
Options: 
• X Y Z 
• X,Y,Z 
• 1, X, Y, Z  (ArcView format) 
 

Transformation Type 
 

Define the transformation type. 
Options: 
• Vertical Shift (1 parameter) 
• Similarity (7 parameter) 
• Affine (12 parameter) 
The calculated transformation parameters from the 
adjustment step are saved in parameter files. One separate 
file is created for each transformation type, the vertical shift, 
the 3D similarity and the 3D affine transformations.   
 

Transform Transform LiDAR strip 
 

 
 
 
Processing status 
 

Show the number of lines of the input file that have been 
processed, and indicate problem with opening the input files 
and the end of processing. 

 
OK Save dialog box settings 

 
Cancel Quit the LiDAR Strip Transformation dialog box 
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